【題目】如圖,是等邊三角形,點(diǎn)分別在邊、上,,與相交于點(diǎn),,垂足為.
(1)求證:;
(2)若,求的長(zhǎng).
【答案】(1)證明見詳解;(2) 7.
【解析】
(1)由是等邊三角形,得AB=CA,∠BAE=∠ACD,進(jìn)而根據(jù)SAS證明;
(2)由,得∠ABE=∠CAD,AD=BE,從而得∠BFG=∠ABE+∠BAD=60°,∠FBG=30°,進(jìn)而求出BF的值,BE的值,即可求解.
(1)∵是等邊三角形,
∴AB=CA,∠BAE=∠ACD,
在和中,
∵
∴(SAS);
(2)∵
∴∠ABE=∠CAD,AD=BE,
∴∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,
∴∠BFG=∠ABE+∠BAD=60°,
∵,
∴∠FBG=30°,
∴BF=2FG=2×3=6,
∴BE=BF+EF=6+1=7,
∴AD=BE=7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖線段AB的端點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到線段AC.
(1)請(qǐng)你用尺規(guī)在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過(guò)的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2,-1),則點(diǎn)C的坐標(biāo)為 ;
(3)線段AB在旋轉(zhuǎn)到線段AC的過(guò)程中,線段AB掃過(guò)的區(qū)域的面積為 ;
(4)若有一張與(3)中所說(shuō)的區(qū)域形狀相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點(diǎn)D在線段AB上,AD=2.點(diǎn)P,Q以相同的速度從D點(diǎn)同時(shí)出發(fā),點(diǎn)P沿DB方向運(yùn)動(dòng),點(diǎn)Q沿DA方向到點(diǎn)A后立刻以原速返回向點(diǎn)B運(yùn)動(dòng).以PQ為直徑構(gòu)造⊙O,過(guò)點(diǎn)P作⊙O的切線交折線AC﹣CB于點(diǎn)E,將線段EP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到EF,過(guò)F作FG⊥EP于G,當(dāng)P運(yùn)動(dòng)到點(diǎn)B時(shí),Q也停止運(yùn)動(dòng),設(shè)DP=m.
(1)當(dāng)2<m≤8時(shí),AP=,AQ=.(用m的代數(shù)式表示)
(2)當(dāng)線段FG長(zhǎng)度達(dá)到最大時(shí),求m的值;
(3)在點(diǎn)P,Q整個(gè)運(yùn)動(dòng)過(guò)程中,
①當(dāng)m為何值時(shí),⊙O與△ABC的一邊相切?
②直接寫出點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)是.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長(zhǎng)時(shí)間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,中, , 且于交的延長(zhǎng)線于.
(1)求證:
(2)如果連結(jié),請(qǐng)寫出與的關(guān)系并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的長(zhǎng)AB=30,寬BC=20.
(1)如圖(1)若沿矩形ABCD四周有寬為1的環(huán)形區(qū)域,圖中所形成的兩個(gè)矩形ABCD與A′B′C′D′相似嗎?請(qǐng)說(shuō)明理由;
(2)如圖(2),x為多少時(shí),圖中的兩個(gè)矩形ABCD與A′B′C′D′相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過(guò)程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當(dāng)10≤t≤30時(shí),R和t之間的關(guān)系式;
(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過(guò)程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過(guò)6 kΩ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某水平地面上建筑物的高度為AB,在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CD和EF,兩標(biāo)桿相隔52米,并且建筑物AB,標(biāo)桿CD和EF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)G處,在G處測(cè)得建筑物頂端A和標(biāo)桿頂端C在同一條直線上;從標(biāo)桿FE后退4米到點(diǎn)H處,在H處測(cè)得建筑物頂端A和標(biāo)桿頂端E在同一條直線上,求建筑物的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若該方程有實(shí)數(shù)根,求a的取值范圍;
(2)若該方程一個(gè)根為-1,求方程的另一個(gè)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com