【題目】甲,乙兩人分別從,兩地相向而行,甲先走3分鐘后乙才開(kāi)始行走,甲到達(dá)地后立即停止,乙到達(dá)地后立即以另一速度返回地,在整個(gè)行駛的過(guò)程中,兩人保持各自速度勻速行走,甲,乙兩人之間的距離(米)與乙出發(fā)的時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示.當(dāng)甲到達(dá)地時(shí),則乙距離地的時(shí)間還需要________分鐘.
【答案】11
【解析】
在乙出發(fā)后18分鐘兩車(chē)相遇,兩車(chē)相遇后,又經(jīng)過(guò)32-18=14分鐘,兩車(chē)之間的距離達(dá)到最大1400米,可以求出兩車(chē)的速度和為:1400÷(32-18)=100米/分,說(shuō)明此時(shí)乙車(chē)已到A地,于是可以得到:甲從開(kāi)始到第一次相遇地點(diǎn)用時(shí)3+18=21分,而乙用14分,因此甲的速度是乙的,根據(jù)速度和是100米/分,可求出乙車(chē)的速度為60米/分,甲車(chē)速度為40米/分;AB兩地的路程為:60×32=1920米,當(dāng)乙到A地時(shí),甲距B地還有1920-1400=520米,因此甲到B地需要520÷40=13分,乙以另一速度返回13秒走的路程1920-880=1040米,所以返回速度為1040÷13=80米,到B地還要880÷80=11分.
解:兩車(chē)的速度和為:1400÷(32-18)=100米/分,
甲從開(kāi)始到第一次相遇地點(diǎn)用時(shí)3+18=21分,而乙相遇后只用14分,因此甲的速度是乙的,
甲速度為100×=40米/分,乙的速度為100×=60米/分,
∴AB兩地的路程為:60×32=1920米,
當(dāng)乙到A地時(shí),甲距B地還有1920-1400=520米,
因此甲到B地需要520÷40=13分,
乙以另一速度返回13秒走的路程1920-880=1040米,
所以返回速度為1040÷13=80米,
到B地還要880÷80=11分.
故答案為:11
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E是CD的中點(diǎn),AF平分∠BAE交BC于點(diǎn)F,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ABG,則CF的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,OB=OC=2,AB=.
(1)求點(diǎn)D的坐標(biāo),直線(xiàn)CD的函數(shù)表達(dá)式;
(2)已知點(diǎn)P是直線(xiàn)CD上一點(diǎn),當(dāng)點(diǎn)P滿(mǎn)足S△PAO=S△ABO時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線(xiàn)AB上是否存在點(diǎn)F(不與A、B重合),使以A、 C、 F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫(xiě)出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一、閱讀材料:
已知實(shí)數(shù)m,n滿(mǎn)足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t-1)=80,整理得t2-1=80,t2=81,所以t=土9,因?yàn)?/span>2m2+n2>0,所以2m2+n2=9.
二、方法歸納:
上面這種方法稱(chēng)為“ 法”,把其中某些部分看成一個(gè)整體,并用新字母代替(即換元),則能使復(fù)雜的問(wèn)題簡(jiǎn)單化.
三、探索實(shí)踐:
根據(jù)以上閱讀材料內(nèi)容,解決下列問(wèn)題,并寫(xiě)出解答過(guò)程.
(1)已知實(shí)數(shù)x、y,滿(mǎn)足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿(mǎn)足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閨蜜裝在大學(xué)校園里盛行,閨蜜裝能很好的表達(dá)“親如姐妹”的友誼,也能成為校園一道靚麗的風(fēng)景.某專(zhuān)賣(mài)店購(gòu)進(jìn)一批,兩款閨蜜裝,共花費(fèi)了18400元,款比款多20套,其中每套款閨蜜裝進(jìn)價(jià)200元,每套款閨蜜裝進(jìn)價(jià)160元.進(jìn)行試銷(xiāo)售,供不應(yīng)求,很快銷(xiāo)售完畢,己知每套款閨蜜裝售價(jià)為240元.
(1)求購(gòu)進(jìn),兩款閨蜜裝各多少套?
(2)國(guó)慶將至,專(zhuān)賣(mài)店又購(gòu)進(jìn)第二批,兩款閨蜜裝并進(jìn)行促銷(xiāo)活動(dòng),在促銷(xiāo)期間,每套款閨蜜裝在進(jìn)價(jià)的基礎(chǔ)上提高銷(xiāo)售,每套款閨蜜裝在第一批售價(jià)的基礎(chǔ)上降低銷(xiāo)售,結(jié)果在促銷(xiāo)售活動(dòng)中,款閨蜜裝的銷(xiāo)量比第一批款銷(xiāo)售量降低了,款閨蜜裝的銷(xiāo)售量比第一批款銷(xiāo)售量上升了,結(jié)果本次促銷(xiāo)活動(dòng)共獲利5200元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績(jī)?nèi)鐖D所示.
(1)甲射擊成績(jī)的眾數(shù)為 環(huán),乙射擊成績(jī)的中位數(shù)為 環(huán);
(2)計(jì)算兩人射擊成績(jī)的方差;
(3)根據(jù)訓(xùn)練成績(jī),你認(rèn)為選派哪一名隊(duì)員參賽更好,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為2,O到定點(diǎn)A的距離為5,點(diǎn)B在⊙O上,點(diǎn)P是線(xiàn)段AB的中點(diǎn).若B在⊙O上運(yùn)動(dòng)一周:
(1)證明點(diǎn)P運(yùn)動(dòng)的路徑是一個(gè)圓.
(思路引導(dǎo):要證點(diǎn)P運(yùn)動(dòng)的路徑是一個(gè)圓,只要證點(diǎn)P到定點(diǎn)M的距離等于定長(zhǎng)r,由圖中的定點(diǎn)、定長(zhǎng)可以發(fā)現(xiàn)M、r.)
(2)△ABC始終是一個(gè)等邊三角形,直接寫(xiě)出PC長(zhǎng)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標(biāo)系中,OB 在 x軸上,若 OA=2,將三角板繞原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 75°,則點(diǎn) A 的對(duì)應(yīng)點(diǎn) A′ 的坐標(biāo)為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com