【題目】如圖,△ABC中,AB=AC,∠A=60°,BC=6,直線MN∥BC,且分別交邊AB,AC于點M,N,已知直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,如果將線段AM繞著點A旋轉(zhuǎn),使點M落在邊BC上的點D處,那么BD=_____.
【答案】3±
【解析】過點A作AE⊥BC于點E,由AB=AC、∠A=60°,可得出△ABC為等邊三角形,進(jìn)而可得出BE、AE的長度,由MN∥BC可得出△AMN∽△ABC,根據(jù)相似三角形的性質(zhì)結(jié)合直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,可求出AM的長度,由旋轉(zhuǎn)的性質(zhì)可得出AD的長度.在Rt△ADE中,利用勾股定理可求出DE的長度,再根據(jù)BD=BE±DE,即可求出BD的長度.
過點A作AE⊥BC于點E,如圖所示.
∵AB=AC,∠A=60°,∴△ABC為等邊三角形,∴BE=CE=BC=3,AE=BC=3.
∵MN∥BC,∴△AMN∽△ABC,∴=()2.
∵直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,∴=()2=,即()2=,解得:AM=,∴AD=AM=.
在Rt△ADE中,∠AED=90°,AD=,AE=3,∴DE=,∴BD=BE±DE=3±.
故答案為:3±.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:(1)△BDA≌△AEC;(2)DE=BD+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點D為AB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,求∠BCE的度數(shù);
(2)如圖2,當(dāng)點D在線段BC上,如果∠BAC=60°,則∠BCE的度數(shù);
(3)設(shè)∠BAC=α,∠BCE=β,如圖3,當(dāng)點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日上午,慶祝中華人民共和國成立70周年大會在首都北京天安門廣場舉行,國慶70年閱兵分列式規(guī)模史上最大,共1.5萬人參閱,閱兵編59個方(梯)隊和聯(lián)合軍樂團(tuán),各型飛機(jī)160余架,裝備580臺(套),是近幾次閱兵中規(guī)模最大的一次.10月1日上午有10萬多群眾參加游行,10月1日晚上的聯(lián)歡活動有6萬多群眾參與,慶祝大會、閱兵式還邀請3萬群眾參加觀禮.這一天參與的群眾約19萬人,即約190000人,如果參與群眾擴(kuò)大20倍,并且用科學(xué)記數(shù)法表示,則參與群眾約為( )人.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:①ME⊥BC;②DE=DN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=60°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作菱形ADEF,使∠DAF=60°,連接CF.
(1)觀察猜想:如圖1,當(dāng)點D在線段BC上時,①AB與CF的位置關(guān)系為: ;
②BC,CD,CF之間的數(shù)量關(guān)系為: .
(2)數(shù)學(xué)思考:如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸:如圖3,當(dāng)點D在線段BC的延長線上時,設(shè)AD與CF相交于點G,若已知AB=4,CD=AB,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每個正方形從第三象限的頂點開始,按順時針方向順序,依次記為A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐標(biāo)原點O,各邊均與x軸或y軸平行,若它們的邊長依次是2,4,6,…,則頂點A20的坐標(biāo)為 ( )
A. (5,5) B. (5,-5) C. (-5,5) D. (-5,-5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com