精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知:在ABC中,∠BAC90°,ABAC,直線m經過點ABD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:(1)BDA≌△AEC;(2)DEBDCE.

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)利用已知得出∠CAE=ABD,進而利用AAS得出△BDA≌△AEC即可;

2)由△BDA≌△AEC,可得出BD=AE,DA=CE,繼而利用線段的和差即可得到結論.

1)∵BD⊥直線m,CE⊥直線m

∴∠BDA=CEA=90°,

∵∠BAC=90°,

∴∠BAD+CAE=BAD+ABD=90°,

∴∠ABD=CAE

在△ABD和△CAE

,

∴△BDA≌△AECAAS);

2BDA≌△AEC,

BD=AE, DA=CE,

DE=AD+AE,

DE= BD+CE.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點E.且ODAC,垂足為點F.

(1)如圖1,如果AC=BD,求弦AC的長;

(2)如圖2,如果E為弦BD的中點,求∠ABD的余切值;

(3)聯結BC、CD、DA,如果BC是⊙O的內接正n邊形的一邊,CD是⊙O的內接正(n+4)邊形的一邊,求ACD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.同時把調查得到的結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據圖中提供的信息解答下列問題:

1)在這次調查中,一共抽取了多少名學生?

2)通過計算補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,公交車部分所對應的圓心角是多少度?

4)若全校有1600名學生,估計該校乘坐私家車上學的學生約有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CABC,垂足為CAC2cm,BC6cm,射線BMBQ,垂足為B,動點PC點出發(fā)以1cm/s的速度沿射線CQ運動,點N為射線BM上一動點,滿足PNAB,隨著P點運動而運動,當點P運動_____秒時,△BCA與點PN、B為頂點的三角形全等.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,為銳角,點為直線上一動點,以為直角邊且在的右側作等腰直角三角形,.

1)如果,.

①當點在線段上時,如圖1,線段的位置關系為___________,數量關系為_____________

②當點在線段的延長線上時,如圖2,①中的結論是否仍然成立,請說明理由.

2)如圖3,如果,,點在線段上運動。探究:當多少度時,?小明通過(1)的探究,猜想時,.他想過點的垂線,與的延長線相交,構建圖2的基本圖案,尋找解決此問題的方法。小明的想法對嗎?如不對寫出你的結論;如對按此方法解決問題并寫出理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點E,且交⊙O于點D,F是BA延長線上一點,若∠CDB=∠BFD.

(1)求證:FD是⊙O的一條切線;

(2)若AB=10,AC=8,求DF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C為線段AB上一點,點DBC的中點,且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠1=2,∠A=D,說明∠F與∠C相等的理由.

解:∵∠1=2( 已知 ),∠2=4 ( ),

∴∠1=4( 等量代換 ),

FBEC( ),

∴∠3=C( 兩直線平行,同位角相等 )

∵∠A=D( ),

EDAC( ),

∴∠F=3 ( ),

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,A=60°,BC=6,直線MNBC,且分別交邊AB,AC于點M,N,已知直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,如果將線段AM繞著點A旋轉,使點M落在邊BC上的點D處,那么BD=_____

查看答案和解析>>

同步練習冊答案