13.如圖,正方形ABCD是一塊綠化帶,E,F(xiàn),G,H分別是AB,BC,CD,AD的中點,陰影部分EOCF,AOGH都是花圃,一只自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥在花圃上的概率為(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{2}{5}$

分析 用陰影部分的面積除以正方形的面積即可求得小鳥在花圃上的概率.

解答 解:∵正方形ABCD是一塊綠化帶,E,F(xiàn),G,H分別是AB,BC,CD,AD的中點,
∴S四邊形AHGO+S四邊形OEFC=$\frac{1}{2}$S正方形ABCD,
∴一只自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥在花圃上的概率為$\frac{1}{2}$,
故選A.

點評 本題考查了幾何概率的知識,解題的關(guān)鍵是求得陰影部分的面積與正方形的面積的比,難度不大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

3.貨車和轎車分別從甲、乙兩地同時出發(fā),沿同一公路相向而行.轎車出發(fā)2.4h后休息,直至與貨車相遇后,以原速度繼續(xù)行駛.設(shè)貨車出發(fā)xh后,貨車、轎車分別到達離甲地y1km和y2km的地方,圖中的線段OA、折線BCDE分別表示y1、y2與x之間的函數(shù)關(guān)系.
(1)求點D的坐標,并解釋點D的實際意義;
(2)求線段DE所在直線的函數(shù)表達式;
(3)當貨車出發(fā)2或5h時,兩車相距200km.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.已知$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$-A=$\frac{x}{x+1}$,其中A是一個含x的代數(shù)式.
(1)求A化簡后的結(jié)果;
(2)當x滿足不等式組$\left\{\begin{array}{l}{x+3>0}\\{x+1≤0}\end{array}\right.$,且x為整數(shù)時,求A的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標系,△AOB的頂點均在格點上,點O為原點,點A,B的坐標分別是(3,2)、B(1,3).
(1)將△AOB向下平移3個單位后得到△A1O1B1,則點B1的坐標為(1,0);
(2)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A2OB2,請在圖中作出△A2OB2,并求出這時點A2的坐標為(-2,3);
(3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積$\frac{\sqrt{13}}{4}$π.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.一個手機經(jīng)銷商計劃購進某品牌的A型、B型、C型三款手機共60部,每款手機至少要購進8部,且恰好用完購機款61000元.設(shè)購進A型手機x部、B型手機y部,三款手機的進價和預售價如表:
手機型號A型B型C型
進價(單位:元/部)90012001100
預售價(單位:元/部)120016001300
(1)用含x,y的式子表示購進C型手機的部數(shù);
(2)求出y與x之間的函數(shù)關(guān)系式;
(3)假設(shè)所購進手機全部售出,綜合考慮各種因素,該手機經(jīng)銷商在購銷這批手機過程中需另外支出各種費用共1500元.
①求出預估利潤P(元)與x(部)的函數(shù)關(guān)系式;
(注:預估利潤P=預售總額-購機款-各種費用)
②求出預估利潤的最大值,并寫出此時購進三款手機各多少部.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.∠α的余角為65°,則∠α的度數(shù)為(  )
A.35°B.25°C.45°D.65°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.如圖,在?ABCD中,E、F為邊BC上兩點,且BE=CF,AF=DE.
(1)求證:△ABF≌△DCE;
(2)四邊形ABCD是矩形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

2.當a=-1時,分式$\frac{{{a^2}+a}}{{{a^2}-a}}$( 。
A.等于零B.等于1C.等于-1D.沒有意義

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

3.已知$\frac{x}{2}$=$\frac{y}{5}$,則$\frac{x+y}{x}$的值為$\frac{7}{2}$.

查看答案和解析>>

同步練習冊答案