【題目】如圖,四邊形ABCD , ECB 延長(zhǎng)線上一點(diǎn),下列推理正確的是( )

A.如果∠1=∠2 ,那么ABCD
B.如果∠3=∠4 ,那么 ADBC
C.如果ADBC , 那么∠6+∠BAD=180°.
D.如果∠6+∠BCD=180°,那么ADBC

【答案】C
【解析】解:A. 由∠1=∠2 ,不能推出ABCD , 錯(cuò)誤;
B. 如果∠3=4 , 那么 ABCD,錯(cuò)誤
C. 如果AD∥BC,那么∠6+∠BAD=180°,正確;
D. 如果∠6+∠BCD=180°,那么AB∥CD,錯(cuò)誤.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨看居民經(jīng)濟(jì)收入的不斷提高以及汽車業(yè)的快速發(fā)展,家用汽車已越來(lái)越多地進(jìn)入普通家庭,抽樣調(diào)查顯示,截止2018年底徐州市汽車擁有量為29.8萬(wàn)輛,已知2016年底該市汽車擁有量為18萬(wàn)輛,設(shè)2016年底至2018年底我市汽車擁有量的平均增長(zhǎng)率為x,根據(jù)題意列方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12)如圖,在RtABC中,ACB90°AC8,BC6,CDAB于點(diǎn)D.點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求線CD的長(zhǎng);

(2)設(shè)CPQ的面積為S,求St之間的函數(shù)關(guān)系式,并確定在運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻t,使得SCPQSABC9100?若存在,求出t的值;若不存在,說(shuō)明理由;

(3)當(dāng)t為何值時(shí),CPQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B(-1,0)和點(diǎn)C(2,3).

(1)求此拋物線的函數(shù)表達(dá)式;

(2)如果此拋物線上下平移后過(guò)點(diǎn)(-2,-1),請(qǐng)直接寫出平移的方向和平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|a|=2,|b|=4, ①若 <0,求a﹣b的值;
②若|a﹣b|=﹣(a﹣b),求a﹣b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算﹣a2+3a2的結(jié)果為( )
A.2a2
B.﹣2a2
C.4a2
D.﹣4a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,2),B(0,6),動(dòng)點(diǎn)C在直線y=x上.若以A、B、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,則點(diǎn)C的個(gè)數(shù)是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組
(1)解:解不等式①得:;
(2)解不等式②得:;
(3)把不等式①和②的解集在數(shù)軸上表示出來(lái):

(4)所以,這個(gè)不等式組的解集是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠CAB的平分線分別交BD、BC于E、F,作BH⊥AF于點(diǎn)H,分別交AC、CD于點(diǎn)G、P,連結(jié)GE、GF.
(1)求證:△OAE≌△OBG.
(2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案