【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=BEC=90°,點P為線段BE延長線上一點,連接CP,以CP為直角邊向下作等腰直角△CPD,線段BECD相交于點F.

(1)求證:;

(2)連接BD,請你判斷ACBD有什么位置關(guān)系?并說明理由.

【答案】(1)證明見解析;(2)ACBD,理由見解析

【解析】分析:(1)證明BCE∽△DCP,相似三角形的對應(yīng)邊成比例;(2)PCE∽△DCB,CBD=∠CEP=90°.

詳解:(1)∵,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,

∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,

∴△BCE∽△DCP,∴;

(2)ACBD,

理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,

,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,

∵∠ACB=90°,∴∠ACB=∠CBD,

ACBD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A、C、F在坐標(biāo)軸上,EOA的中點,四邊形AOCB是矩形,四邊形BDEF是正方形,若點C的坐標(biāo)為(3,0),則點D的坐標(biāo)為(  )

A. 1,2.5B. 11+ C. 1,3D. 1,1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于點M,交BE于點G,AD平分MAC,交BC于點D,交BE于點F.

(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;

(2)若C=30°,圖中是否存在等邊三角形?若存在,請寫出來并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點E使CE=CA,連接AE。F為AB上一點,且BF=DE,連接FC.

(1)若DE=1,CF=2,求CD的長。

(2)如圖2,點G為線段AE的中點,連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;BG=GC;③∠EAG=45°;AGCF;SECG:SAEG=2:5,其中正確結(jié)論的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC的直角邊BCx軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負(fù)半軸于E,雙曲線y=(x>0)的圖象經(jīng)過點A,若BEC的面積為6,則k等于( 。

A. 3 B. 6 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)已知E,F分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當(dāng)EF分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.

試探究下列問題:

1)如圖1,若點E不是邊BC的中點,F不是邊CD的中點,且CE=DF,上述結(jié)論,是否仍然成立?(請直接回答成立不成立),不需要證明)

2)如圖2,若點E,F分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論,是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;

3)如圖3,在(2)的基礎(chǔ)上,連接AEBF,若點MN,PQ分別為AE,EFFD,AD的中點,請判斷四邊形MNPQ矩形、菱形、正方形中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗成績?nèi)缦卤硭荆?/span>

測驗類別

平時測驗

期中測驗

期末測驗

1

2

3

成績

100

106

106

105

110

(1)該同學(xué)上學(xué)期5次測驗成績的眾數(shù)為 ,中位數(shù)為 ;

(2)該同學(xué)上學(xué)期數(shù)學(xué)平時成績的平均數(shù)為 ;

(3)該同學(xué)上學(xué)期的總成績是將平時測驗的平均成績、期中測驗成績、期末測驗成績按照2:3:5的比例計算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評成績(結(jié)果保留整數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖所示,∠B=OAF=90°,BO=3cm,AB=4cm,AF=12cm,求圖中半圓的面積.

2)在直角坐標(biāo)系內(nèi),一次函數(shù)y=kx+b的圖象經(jīng)過三點A2,0),B0,2),Cm,3).求這個一次函數(shù)解析式并求m的值.

查看答案和解析>>

同步練習(xí)冊答案