【題目】電影票上“45號(hào)”,記作(45),則“54號(hào)”記作______

【答案】(5,4)

【解析】

“45號(hào)記作(4,5可知,數(shù)對(duì)中第一個(gè)數(shù)字表示排,第二個(gè)數(shù)字表示號(hào),據(jù)此即可用數(shù)對(duì)表示出54號(hào).

解:電影票上的45號(hào)記作(4,5)則54號(hào)記作(5,4).
故答案為:(5,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商人在一次買賣中均以120元賣出兩件衣服,一件賺25%,一件賠25%,在這次交易中,該商人(
A.賺16元
B.賠16元
C.不賺不賠
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab,則a+c____b+c;,若mxmy,且xy成立,則m___0;若5m-7b5n-7b,則m__n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3是關(guān)于方程x25xc=的一個(gè)根,則這個(gè)方程的另一個(gè)根是(

A.2B.2C.5D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第三屆世界互聯(lián)網(wǎng)大會(huì)(3rd World Internet Conference),是由中華人民共和國(guó)倡導(dǎo)并舉辦的互聯(lián)網(wǎng)盛會(huì),于2016年11月16日至18日在浙江烏鎮(zhèn)舉辦.某初中學(xué)校為了了解本校學(xué)生對(duì)本次互聯(lián)網(wǎng)大會(huì)的關(guān)注程度(關(guān)注程度分為:A.特別關(guān)注;B.一般關(guān)注;C.偶爾關(guān)注;D.不關(guān)注),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整)請(qǐng)根據(jù)圖中信息回答問(wèn)題.

(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)求出圖2中扇形B所對(duì)的圓心角度數(shù),并將圖1補(bǔ)充完整.

(3)在這次調(diào)查中,九(1)班共有甲、乙、丙、丁四人“特別關(guān)注”本屆互聯(lián)網(wǎng)大會(huì),現(xiàn)準(zhǔn)備從四人中隨機(jī)抽取兩人進(jìn)行交流,請(qǐng)用列表法或畫樹狀圖的方法求出抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線yx22向上平移4個(gè)單位,再向右平移3個(gè)單位,得到新的拋物線,那么新的拋物線的表達(dá)式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果M個(gè)不同的正整數(shù),對(duì)其中的任意兩個(gè)數(shù),這兩個(gè)數(shù)的積能被這兩個(gè)數(shù)的和整除,則稱這組數(shù)為M個(gè)數(shù)的祖沖之?dāng)?shù)組.如(3,6)為兩個(gè)數(shù)的祖沖之?dāng)?shù)組,因?yàn)?×6能被(3+6整除);又如(15,30,60)為三個(gè)數(shù)的祖沖之?dāng)?shù)組,因?yàn)椋?5×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)我們發(fā)現(xiàn),3和6,4和12,5和20,6和30…,都是兩個(gè)數(shù)的祖沖之?dāng)?shù)組;由此猜測(cè)n和n(n﹣1)(n≥2,n為整數(shù))組成的數(shù)組是兩個(gè)數(shù)的祖沖之?dāng)?shù)組,請(qǐng)證明這一猜想.
(2)若(4a,5a,6a)是三個(gè)數(shù)的祖沖之?dāng)?shù)組,求滿足條件的所有三位正整數(shù)a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知, 是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

1)求一次函數(shù)、反比例函數(shù)的關(guān)系式;

2)求AOB的面積.

3)當(dāng)自變量x滿足什么條件時(shí),y1>y2 .(直接寫出答案)

4)將反比例函數(shù)的圖象向右平移nn0個(gè)單位,得到的新圖象經(jīng)過(guò)點(diǎn)(3,-4),求對(duì)應(yīng)的函數(shù)關(guān)系式y3.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是“趙爽弦圖”,其中△ABH、△BCG、△CDF和△DAE是四個(gè)全等的直角三角形,四邊形ABC的和EFGH都是正方形.根據(jù)這個(gè)圖形的面積關(guān)系,可以證明勾股定理.設(shè)AD=c,AE=b,c=10,a﹣b=2.
(1)正方形EFGH的面積為 , 四個(gè)直角三角的面積和為
(2)求(a+b)2的值.
(3)a+b= , a= , b=

查看答案和解析>>

同步練習(xí)冊(cè)答案