【題目】如圖所示,△ABC內(nèi)接于⊙O,AC是直徑,D在⊙O上,且AC平分∠BCD,AE∥BC,交CD于E,F在CD的延長線上,且AE=EF.連接AF
(1)求證:AF是⊙O的切線;
(2)連接BF交AE于G,若AB=12,AE=13,求AG的長.
【答案】(1)見解析;(2)AG=4.
【解析】
(1)由角平分線的性質(zhì)和平行線的性質(zhì)可得AE=CE=EF,可得∠CAF=90°,即可證AF是⊙O的切線;
(2)連接AD,由“AAS”可證△ABC≌△ADC,可得AB=AD=12,BC=CD,由勾股定理可求DE=5,由平行線分線段成比例可求GE=9,即可求AG的長.
解:證明:(1)∵AC平分∠BCD
∴∠ACB=∠ACD,
∵AE∥BC
∴∠ACB=∠CAE=∠ACD
∴AE=CE,且AE=EF
∴AE=CE=EF
∴△CAF是直角三角形
∴∠CAF=90°
∴AF是⊙O的切線
(2)連接AD,
∵AC是直徑
∴∠ABC=90°=∠ADC
∵∠ACB=∠ACD,AC=AC,∠ABC=∠ADC=90°
∴△ABC≌△ADC(AAS)
∴AB=AD=12,BC=CD
在Rt△AED中,DE=
∵AE=CE=EF=13
∴CF=2EF,CD=BC=CE+DE=18,
∵AE∥BC
∴
∴EG=9
∴AG=AE﹣EG=13﹣9=4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑等于5 cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為
A.60°B.120°C.60°或120°D.30°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB長為10,弦AC長為6,∠ACB的平分線交⊙O于D.
(1)求BC的長;
(2)連接AD和BD,判斷△ABD的形狀,說明理由.
(3)求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19 m),另外三邊利用學(xué),F(xiàn)有總長38 m的鐵欄圍成.
(1)若圍成的面積為180 m2,試求出自行車車棚的長和寬;
(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請你給出設(shè)計方,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B兩點,與y軸交于點C (0,3),點P在該拋物線的對稱軸上,且縱坐標(biāo)為2.
(1)求拋物線的表達(dá)式以及點P的坐標(biāo);
(2)當(dāng)三角形中一個內(nèi)角α是另一個內(nèi)角β的兩倍時,我們稱α為此三角形的“特征角”.
①當(dāng)D在射線AP上,如果∠DAB為△ABD的特征角,求點D的坐標(biāo);
②點E為第一象限內(nèi)拋物線上一點,點F在x軸上,CE⊥EF,如果∠CEF為△ECF的特征角,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,AD=6,M在AD上從A向D運動,連接BM交AC于N,連接DN.
(1)證明:無論M運動到AD上的何處,都有△ABN≌△ADN;
(2)當(dāng)M運動到何處時,S△ABN=S正方形ABCD?
(3)若M從A到D,再從D到C,在整個運動過程中,DM為多少時,△ABN是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標(biāo)原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點運動時間為t,則S關(guān)于x的函數(shù)圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果三角形的兩個內(nèi)角與滿足,那么稱這樣的三角形為“類直角三角形”.
嘗試運用
(1)如圖1,在中,,,,是的平分線.
①證明是“類直角三角形”;
②試問在邊上是否存在點(異于點),使得也是“類直角三角形”?若存在,請求出的長;若不存在,請說明理由.
類比拓展
(2)如圖2,內(nèi)接于,直徑,弦,點是弧上一動點(包括端點,),延長至點,連結(jié),且,當(dāng)是“類直角三角形”時,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com