【題目】將長方形紙片ABCD如圖折疊,B、C 兩點恰好重合落在AD 邊上的同一點P 處,折痕分別是MH、NG,已知∠MPN=90°,且PM=3,MN=5.則△PGN面積為____.

【答案】4.8.

【解析】

根據(jù)折疊性質得BM=PM,CN=PN;∠2=1,得∠2=3,PG=PN,根據(jù)勾股定理求出PN,再根據(jù)面積公式求h=,再求面積.

將矩形紙片ABCD折疊,BC兩點恰好重合落在AD邊上點P處,BM=PMCN=PN;已知,PM=3,MN=5,中由勾股定理得,根據(jù)直角三角形的面積公式,在,解得h=,由ADBC,得∠3=1,又∠2=1,所以∠2=3,所以,PG=PN=4,所以,△PGN面積為4=4.8.

故答案為:4.8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購. 經(jīng)調查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.

(1)求甲、乙兩種型號設備的價格;

(2)該公司經(jīng)預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設備的產(chǎn)量為240噸/月,乙型設備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AE、BF是角平分線,它們相交于點O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年初春,我國西北部分省區(qū)發(fā)生了雪災,造成通訊受阻.如圖,現(xiàn)有某處山坡上一座發(fā)射塔被冰雪從C處壓折,塔尖恰好落在坡面上的點B處,在B處測得點C的仰角為45°,塔基A的俯角為30°,又測得斜坡上點A到點B的坡面距離AB20米,求折斷前發(fā)射塔的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,n+1個邊長為2的等邊三角形有一條邊在同一直線上,設△B2D1C1面積為S1,B3D2C2面積為S2,…,Bn+1DnCn面積為Sn,則Sn等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,ABDE,∠A=∠EDF,再添加一個條件,可使△ABC DEF,下列條件不符合的是

A.B=∠EB.BCEFC.ADCFD.ADDC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長均為1,建立如圖所示的直角坐標系,已知兩點A02),B41

1)請在x軸上畫出一點P,使得PA+PB的值最;

2)請直接寫出:點P的坐標  ;PA+PB的最小值為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在ABC中,BO,CO分別平分∠ABC,ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點E,記∠BAC=1,BEC=2,則以下結論①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正確的是( 。

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

同步練習冊答案