分析 (1)當(dāng)∠AFD=30°時(shí),AC∥DF,依據(jù)角平分線的定義可先求得∠CAF=∠FAB=30°,由內(nèi)錯(cuò)角相等,兩直線平行,可證明AC∥DF,;當(dāng)∠AFD=60°時(shí),DF⊥AB,由三角形的內(nèi)角和定理證明即可;
(2)分為∠FAP=∠AFP,∠AFP=∠APF,∠APF=∠FAP三種情況求解即可;
(3)先依據(jù)三角形外角的性質(zhì)證明∠FNM=30°+∠BMN,接下來再依據(jù)三角形外角的性質(zhì)以及∠AFM和∠BMN的關(guān)系可證明∠FMN=30°+∠BMN,從而可得到∠FNM與∠FMN的關(guān)系.
解答 解:(1)如圖1所示:
當(dāng)∠AFD=30時(shí),AC∥DF.
理由:∵∠CAB=60°,AF平分∠CAB,
∴∠CAF=30°.
∵∠AFD=30°,
∴∠CAF=∠AFD,
∴AC∥DF.
如圖2所示:當(dāng)∠AFD=60°時(shí),DF⊥AB.
∵∠CAB=60°,AF平分∠CAB,
∴∠AFG=30°.
∵∠AFD=60°,
∴∠FGB=90°.
∴DF⊥AB.
故答案為:30;60.
(2)∵∠CAB=60°,AF平分∠CAB,
∴∠FAP=30°.
當(dāng)如圖3所示:
當(dāng)∠FAP=∠AFP=30°時(shí),∠APD=∠FAP+∠AFP=30°+30°=60°;
如圖4所示:
當(dāng)∠AFP=∠APF時(shí).
∵∠FAP=30°,∠AFP=∠APF,
∴∠AFP=∠APF=$\frac{1}{2}$×(180°-30°)=$\frac{1}{2}$×150°=75°.
∴∠APD=∠FAP+∠AFP=30°+75°=105°;
如圖5所示:
如圖5所示:當(dāng)∠APF=∠FAP=30°時(shí).
∠APD=180°-30°=150°.
綜上所述,∠APD的度數(shù)為60°或105°或150°.
(3)∠FMN=∠FNM.
理由:如圖6所示:
∵∠FNM是△BMN的一個(gè)外角,
∴∠FNM=∠B+∠BMN.
∵∠B=30°,
∴∠FNM=∠B+∠BMN=30°+∠BMN.
∵∠BMF是△AFM的一個(gè)外角,
∴∠MBF=∠MAF+∠AFM,
即∠BMN+∠FMN=∠MAF+∠AFM.
又∵∠MAF=30°,∠AFM=2∠BMN,
∴∠BMN+∠FMN=30°+2∠BMN.
∴∠FMN=30°+∠BMN.
∴∠FNM=∠FMN.
點(diǎn)評(píng) 本題主要考查的是三角形的綜合應(yīng)用,解答本題主要應(yīng)用了角平分線的定義、三角形的內(nèi)角和定理、平行線的判定定理、三角形的外角的性質(zhì),依據(jù)三角形的外角的性質(zhì)證得∠FNM=∠FMN是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a8÷a2=a4 | B. | a3•a2=a6 | C. | (-2a3)2=4a9 | D. | 6x2•3xy=18x3y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2×107米 | B. | 2×108米 | C. | 2×10-7米 | D. | 2×10-8米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年四川省成都市金堂縣八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷就(解析版) 題型:單選題
一次函數(shù)的圖象不經(jīng)過( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com