已知拋物線y=-x2-2x+a2-
12

(1)確定此拋物線的頂點在第幾象限;
(2)假設(shè)拋物線經(jīng)過原點,求拋物線的頂點坐標(biāo).
分析:(1)此題可以利用利用配方法求出拋物線的頂點坐標(biāo)為(-1,a2+
1
2
)
,然后即可確定在第二象限;
(2)因為拋物線經(jīng)過原點,所以a2-
1
2
=0
,解此方程即可求出a,然后就可以求出拋物線頂點坐標(biāo).
解答:解:(1)∵y=-x2-2x+a2-
1
2
=-(x2+2x)+a2-
1
2
=-(x+1)2+a2+
1
2

∴拋物線的頂點坐標(biāo)為(-1,a2+
1
2
)
,在第二象限;
(2)∵拋物線經(jīng)過原點,所以a2-
1
2
=0
,所以a=±
2
2

∴a2+
1
2
=1,
∴頂點坐標(biāo)為(-1,1).
點評:考查求拋物線的頂點坐標(biāo)、對稱軸的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習(xí)冊答案