【題目】如圖,在Rt△ABC中,∠A=90°,點D,E分別在AC,BC上,且CD·BC=AC·CE,以E為圓心,DE長為半徑作圓,⊙E經過點B,與AB,BC分別交于點F,G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,
①求⊙E的半徑;
②若Rt△ABC的內切圓圓心為I,則IE= .
【答案】(1)證明見解析;(2)①⊙E的半徑為20;②IE=
【解析】試題分析:(1)證明△CDE∽△CAB,得∠EDC=∠A=90°,所以AC是⊙E的切線;
(2)①如圖1,作輔助線,構建矩形AHED,設⊙E的半徑為r,表示BH和EC的長,證明△BHE∽△EDC,
列比例式代入r可得結論;
②如圖2,作輔助線,構建直角△IME,分別求IM和ME的值,利用勾股定理可求IE的長.
試題解析:(1)∵CDBC=ACCE,
∴,
∵∠DCE=∠ACB,
∴△CDE∽△CAB,
∴∠EDC=∠A=90°,
∴ED⊥AC,
∵點D在⊙E上,
∴AC是⊙E的切線;
(2)①如圖1,過E作EH⊥AB于H,
∴BH=FH,
∵∠A=∠AHE=∠ADE=90°,
∴四邊形AHED是矩形,
∴ED=AH,ED∥AB,
∴∠B=∠DEC,
設⊙E的半徑為r,則EB=ED=EG=r,
∴BH=FH=AH-AF=DE-AF=r-4,
EC=EG+CG=r+5,
在△BHE和△EDC中,
∵∠B=∠DEC,∠BHE=∠EDC=90°,
∴△BHE∽△EDC,
∴,即,
∴r=20,
∴⊙E的半徑為20;
②如圖2,過I作IM⊥BC于M,過I作IH⊥AB于H,
由①得:FH=BH=r-4=20-4=16,AB=AF+2BH=4+2×16=36,
BC=2r+5=2×20+5=45,
∴AC==27,
∵I是Rt△ABC的內心,
∴IM==9,
∴AH=IM=9,
∴BH=BM=36-9=27,
∴EM=27-20=7,
在Rt△IME中,由勾股定理得:IE=.
科目:初中數學 來源: 題型:
【題目】(2016浙江省衢州市)已知二次函數的圖象,如圖所示
(1)根據方程的根與函數圖象之間的關系,將方程的根在圖上近似地表示出來(描點),并觀察圖象,寫出方程的根(精確到0.1).
(2)在同一直角坐標系中畫出一次函數的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數的值小于二次函數的值.
(3)如圖,點P是坐標平面上的一點,并在網格的格點上,請選擇一種適當的平移方法,使平移后二次函數圖象的頂點落在P點上,寫出平移后二次函數圖象的函數表達式,并判斷點P是否在函數的圖象上,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班為參加學校的大課間活動比賽,準備購進一批跳繩,已知2根A型跳繩和1根B型跳繩共需56元,1根A型跳繩和2根B型跳繩共需82元.
(1)求一根A型跳繩和一根B型跳繩的售價各是多少元?
(2)學校準備購買50根跳繩,如果A型跳繩的數量不多于B型跳繩數量的3倍,那么A型跳繩最多能買多少條?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知直線:交軸于,交軸于.
(1)直接寫出的值為______.
(2)如圖2,為軸負半軸上一點,過點的直線:經過的中點,點為軸上一動點,過作軸分別交直線、于、,且,求的值.
(3)如圖3,已知點,點為直線右側一點,且滿足,求點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖象經過點(2,1),(0,1).
(1)求該二次函數的表達式及函數圖象的頂點坐標和對稱軸;
(2)若點P),Q)在拋物線上,試判斷與的大小.(寫出判斷的理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】七年級某班級為了促進同學養(yǎng)成良好的學習習慣,每天都對同學進行學規(guī)管理記分.如下是小李同學第8周學規(guī)得分(規(guī)定:加分為“+”,扣分為“﹣”).
(1)第8周小李學規(guī)得分總計是多少?
(2)根據班規(guī),一學期里班級還會將同學每周的學規(guī)得分進行累加.已知小李同學第7周末學規(guī)累加分數為98分,若他在第9周末學規(guī)累加分數達到105分,則他第9周的學規(guī)得分總計是多少分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①所示,在△ABC中,∠A+∠B+∠C=___________度;
(2)如圖②所示,在五角星中,∠A+∠B+∠C+∠D+∠E=__________度;
(3)如圖③所示,在七角星中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_________度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD,點P是對角線AC上一點,連結BP,過P作PQ⊥BP,PQ交CD于Q,若AP=,CQ=3,則四邊形PBCQ的面積為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】動物學家通過大量的調查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現年20歲的這種動物活到25歲的概率為多少?現年25歲的這種動物活到30歲的概率為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com