【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于點O.
(1)AB的長為 ;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F(xiàn),連接EF與AC相交于點G.
①求證:△ABE≌△ACF;
②判斷△AEF是哪一種特殊三角形,并說明理由.
【答案】(1)2;(2)①見解析;②△AEF是等邊三角形,理由見解析
【解析】分析:(1)利用菱形對角線互相垂直且平分可得AO、OB,根據(jù)勾股定理求出即可;
(2)①由(1)知,菱形ABCD的邊長是2,AC=2,然后由△ABC和△ACD是等邊三角形,利用ASA可證得△ABE≌△ACF;
②由①可得AE=AF,根據(jù)有一個角是60°的等腰三角形是等邊三角形推出即可.
詳解:(1)∵在菱形ABCD中,AC=2,BD=2,
∴∠AOB=90°,OA=AC=1,BO=BD=,
在Rt△AOB中,由勾股定理得:AB==2;
故答案為:2;
(2)①∵由(1)知,菱形ABCD的邊長是2,AC=2,
∴△ABC和△ACD是等邊三角形,
∴∠BAC=∠BAE+∠CAE=60°,
∵∠EAF=∠CAF+∠CAE=60°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
②△AEF是等邊三角形,
理由是:∵△ABE≌△ACF,
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校實驗課程改革,初三年級設(shè)罝了A,B,C,D四門不同的拓展性課程(每位學(xué)生只選修其中一門,所有學(xué)生都有一門選修課程),學(xué)校摸底調(diào)査了初三學(xué)生的選課意向,并將調(diào)查結(jié)果繪制成兩個不完整的統(tǒng)計圖,問該校初三年級共有多少學(xué)生?其中要選修B、C課程的各有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC,AB于點D,E,AE=3cm,△ADC的周長為9cm,則△ABC的周長是( )
A. 10cm B. 12cm C. 15cm D. 17cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,△AOB為等腰直角三角形,A(4,4).
(1)點B坐標為
(2)如圖2,若C為x軸正半軸上一動點,以AC為直角邊作等腰Rt△ACD,∠ACD=90,連OD,求∠AOD的度數(shù);
(3)如圖3,過點A作y軸的垂線交y軸于點E,F為x軸負半軸上一點,點G在EF的延長線上,以EG為直角邊作等腰Rt△EGH,過點A作x軸垂線交EH于點M,連FM,等式=1是否成立?若成立,請證明;若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現(xiàn)隨機抽取福海中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a=________%;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C級對應(yīng)的圓心角為________度;
(4)若該校共有2 000名學(xué)生,請你估計該校D級學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD.求證:EF=BE+FD;
(2)如圖,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?
(3)如圖,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求出∠BOD的度數(shù);
(2)經(jīng)測量發(fā)現(xiàn):OE平分∠BOC,請通過計算說明道理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上星期我市某水果價格呈上升趨勢,某超市第一次用1000元購進的這種水果很快賣完,第二次又用960元購進該水果,但第二次每千克的進價是第一次進價的1.2倍,購進數(shù)量比第一次少了20千克.
(1)求第一次購進這種水果每千克的進價是多少元?
(2)本星期受天氣影響,批發(fā)市場這種水果的數(shù)量有所減少.該超市所購進的數(shù)量比上星期所進購的總量減少了4a%,每千克的進價在上星期第二次進價的基礎(chǔ)上上漲5a%,結(jié)果本星期進貨總額比上星期進貨總額少16元,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com