【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
(1)小明的思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC= .
問(wèn)題遷移:如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),∠ADP=∠α,∠BCP=∠β.
(2)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(3)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β之間的數(shù)量關(guān)系.
【答案】
(1)110°
(2)解:∠CPD=∠α+∠β,理由如下:
如圖3,過(guò)P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(3)解:當(dāng)P在BA延長(zhǎng)線時(shí),∠CPD=∠β﹣∠α;
理由:如圖4,過(guò)P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;
當(dāng)P在BO之間時(shí),∠CPD=∠α﹣∠β.
理由:如圖5,過(guò)P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.
【解析】解:過(guò)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,
∴∠APC=50°+60°=110°,
所以答案是:110°;
∠CPD=∠α+∠β,理由如下:
(1)如圖3,過(guò)P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(2)當(dāng)P在BA延長(zhǎng)線時(shí),∠CPD=∠β﹣∠α;
理由:如圖4,過(guò)P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;
當(dāng)P在BO之間時(shí),∠CPD=∠α﹣∠β.
理由:如圖5,過(guò)P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.
首先過(guò)P作PE∥AB,然后依據(jù)平行線的性質(zhì)可得到∠APC=50°+60°=110°.
(1)過(guò)P作PE∥AD交CD于E,依據(jù)平行公理的推理可得到AD∥PE∥BC,接下來(lái),再依據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)首先畫出圖形(分兩種情況:①點(diǎn)P在BA的延長(zhǎng)線上,②點(diǎn)P在AB的延長(zhǎng)線上),然后根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的性質(zhì)的相關(guān)知識(shí),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接春節(jié),某縣準(zhǔn)備用燈籠美化濱河路,許采用A、B兩種不同造型的燈籠共600個(gè).且A型燈籠的數(shù)量比B型燈籠的 多15個(gè).
(1)求A、B兩種燈籠各需多少個(gè)?
(2)已知A、B型燈籠的單價(jià)分別為40元、30元,則這次美化工程需多少費(fèi)用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一個(gè)奇數(shù)是123,則m的值是( )
A.9
B.10
C.11
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明一家三口國(guó)慶節(jié)隨旅游團(tuán)去九寨溝旅游,共花費(fèi)人民幣5600元,他把旅途費(fèi)用支出情況制成了如下的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問(wèn)題:
(1)哪一部分支出的費(fèi)用占整個(gè)支出的 ?
(2)小明一家在食宿上用去多少元?
(3)小明一家支出的路費(fèi)共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對(duì)角線OB折疊后,點(diǎn)A與點(diǎn)D重合,OD與BC交于點(diǎn)E,則點(diǎn)D的坐標(biāo)是( )
A.(4,8) B.(5,8) C.(,) D.(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我市全面實(shí)行新型農(nóng)村合作醫(yī)療,得到了廣大農(nóng)民的積極響應(yīng),很多農(nóng)民看病貴、看病難的問(wèn)題在合作醫(yī)療中得到了緩解.參加醫(yī)保的農(nóng)民可在規(guī)定的醫(yī)院就醫(yī)并按規(guī)定標(biāo)準(zhǔn)報(bào)銷部分醫(yī)療費(fèi)用,表①是醫(yī)療費(fèi)用分段報(bào)銷的標(biāo)準(zhǔn);表②是甲、乙、丙三位農(nóng)民今年的實(shí)際醫(yī)療費(fèi)及個(gè)人承擔(dān)總費(fèi)用.
表①
醫(yī)療費(fèi)用范圍 | 門診費(fèi) | 住院費(fèi)(元) | ||
0~5000的部分 | 5001~20000的部分 | 20001及以上的部分 | ||
報(bào)銷比例 | a% | 80% | 85% | c% |
表②
門診費(fèi) | 住院費(fèi) | 個(gè)人承擔(dān)總費(fèi)用 | |
甲 | 260元 | 0元 | 182元 |
乙 | 80元 | 2800元 | b元 |
丙 | 400元 | 25000元 | 4030元 |
注明:
①個(gè)人承擔(dān)醫(yī)療費(fèi)=實(shí)際醫(yī)療費(fèi)﹣按標(biāo)準(zhǔn)報(bào)銷的金額;
②個(gè)人承擔(dān)總費(fèi)用包括門診費(fèi)和住院費(fèi)中個(gè)人承擔(dān)的部分.
③本題中費(fèi)用精確到元.
請(qǐng)根據(jù)上述信息,解答下列問(wèn)題:
(1)填空:a= , b=;
(2)求住院費(fèi)20001元及以上的部分報(bào)銷醫(yī)療費(fèi)用的比例c%;
(3)李大爺去年和今年的實(shí)際住院費(fèi)共計(jì)52000元,他本人共承擔(dān)了6850元,已知今年的住院費(fèi)超過(guò)去年,則李大爺今年實(shí)際住院費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一家苗圃計(jì)劃植桃樹和柏樹,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植桃樹的利潤(rùn)(萬(wàn)元)與投資成本x(萬(wàn)元)滿足如圖①所示的二次函數(shù);種植柏樹的利潤(rùn)(萬(wàn)元)與投資成本x(萬(wàn)元)滿足如圖②所示的正比例函數(shù)=kx.
(1)分別求出利潤(rùn)(萬(wàn)元)和利潤(rùn)(萬(wàn)元)關(guān)于投資成本x(萬(wàn)元)的函數(shù)關(guān)系式;
(2)如果這家苗圃以10萬(wàn)元資金投入種植桃樹和柏樹,桃樹的投資成本不低于2萬(wàn)元且不高于8萬(wàn)元,苗圃至少獲得多少利潤(rùn)?最多能獲得多少利潤(rùn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com