【題目】如圖,⊙O是△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)D.
(1)求證:∠CAD=∠B.
(2)若AC是∠BAD的平分線,sinB=,BC=2.求⊙O的半徑.
【答案】(1)見(jiàn)解析;(2)⊙O的半徑為.
【解析】
(1)連結(jié)AO,并延長(zhǎng)AO交⊙O與點(diǎn)E,連結(jié)EC,依據(jù)圓周角定理可得到∠B=∠E,然后根據(jù)直徑所對(duì)的圓周角為90°,得出∠E+∠EAC=90°,再根據(jù)切線的性質(zhì)可得∠EAC+∠CAD=90°,進(jìn)行證明即可;
(2)根據(jù)AC是∠BAD的平分線,結(jié)合(1)中結(jié)論證出BC=AC,然后由∠B=∠E可得到sinE=,從而可求得AE的長(zhǎng),然后可求得⊙O的半徑.
解:(1)連結(jié)AO,并延長(zhǎng)AO交⊙O與點(diǎn)E,連結(jié)EC.
∵AD為⊙O的切線,
∴OA⊥AD,
∴∠EAD=90°,
∴∠EAC+∠CAD=90°.
∵AE為⊙O的直徑,
∴∠E+∠EAC=90°,
∴∠E=∠CAD.
又∵∠E=∠B,
∴∠CAD=∠B.
(2)∵AC是∠BAD的平分線,
∴∠BAC=∠CAD.
又∵∠CAD=∠B,
∴∠BAC=∠CAB.
∴AC=BC=2.
又∵∠E=∠B,
∴∠CAD=∠B.
∴sinE=sinB=,
在RtAEC中,sinE=,
即=,解得AE=,
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E是邊BC上的點(diǎn),將線段DE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到EF,過(guò)點(diǎn)C作CG∥EF交BA(或其延長(zhǎng)線)于點(diǎn)G,連接DF,FG.
(1)FG與CE的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)如圖2,若點(diǎn)E是CB延長(zhǎng)線上的點(diǎn),其它條件不變.
①(1)中的結(jié)論是否仍然成立?請(qǐng)作出判斷,并給予證明;
②DE,DF分別交BG于點(diǎn)M,N,若BC=2BE,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O內(nèi)切于Rt△ABC,點(diǎn)P、點(diǎn)Q分別在直角邊BC、斜邊AB上,PQ⊥AB,且PQ與⊙O相切,若AC=2PQ,則tan∠B的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華在體育館的看臺(tái)P處進(jìn)行觀測(cè),測(cè)得另一看臺(tái)觀眾A處的俯角為15°,觀眾B處的俯角為60°,已知觀眾A、B所在看臺(tái)的坡度i(即tan∠ABC)為1:,點(diǎn)P、H、B、C、A在同一個(gè)平面上,點(diǎn)H、B、C在同一條直線上,且PH⊥HC,PH=15米.
(1)AB所在看臺(tái)坡角∠ABC=____度;
(2)求A、B兩點(diǎn)間的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減;⑥a+b+c>0;⑦方程ax2+bx+c=﹣4有實(shí)數(shù)解,正確的有( )
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB在平面直角坐標(biāo)系中,已知:B(0,),點(diǎn)A在x軸的正半軸上,OA=3,∠BAD=30°,將△AOB沿AB翻折,點(diǎn)O到點(diǎn)C的位置,連接CB并延長(zhǎng)交x軸于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度沿x軸的正方向運(yùn)動(dòng),當(dāng)△PAB為直角三角形時(shí),求t的值;
(3)在(2)的條件下,當(dāng)△PAB為以∠PBA為直角的直角三角形時(shí),在y軸上是否存在一點(diǎn)Q使△PBQ為等腰三角形?如果存在,請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,將邊CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到線段CE,連接DE,AE,BD交于點(diǎn)F.
(1)求∠AFB的度數(shù);
(2)求證:BF=EF;
(3)連接CF,直接用等式表示線段AB,CF,EF的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com