【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線段BC上時(shí),如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖2,①中的結(jié)論是否仍然成立,請說明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動。探究:當(dāng)∠ACB多少度時(shí),CE⊥BC?請說明理由.
【答案】(1)①垂直,相等.②都成立,理由見解析;(2)45°,理由見解析
【解析】
試題(1)①根據(jù)∠BAD=∠CAE,BA=CA,AD=AE,運(yùn)用“SAS”證明△ABD≌△ACE,根據(jù)全等三角形性質(zhì)得出對應(yīng)邊相等,對應(yīng)角相等,即可得到線段CE、BD之間的關(guān)系;
②先根據(jù)“SAS”證明△ABD≌△ACE,再根據(jù)全等三角形性質(zhì)得出對應(yīng)邊相等,對應(yīng)角相等,即可得到①中的結(jié)論仍然成立;
(2)先過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,畫出符合要求的圖形,再結(jié)合圖形判定△GAD≌△CAE,得出對應(yīng)角相等,即可得出結(jié)論.
試題解析:
解(1):(1)CE與BD位置關(guān)系是CE⊥BD,數(shù)量關(guān)系是CE=BD.
理由:如圖1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,
∴∠BAD=∠CAE.
又 BA=CA,AD=AE,
∴△ABD≌△ACE (SAS)
∴∠ACE=∠B=45°且 CE=BD.
∵∠ACB=∠B=45°,
∴∠ECB=45°+45°=90°,即 CE⊥BD.
故答案為:垂直,相等;
②都成立,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠CAE,
在△DAB與△EAC中,
∴△DAB≌△EAC,
∴CE=BD,∠B=∠ACE,
∴∠ACB+∠ACE=90°,即CE⊥BD;
(2)當(dāng)∠ACB=45°時(shí),CE⊥BD(如圖).
理由:過點(diǎn)A作AG⊥AC交CB的延長線于點(diǎn)G,則∠GAC=90°,
∵∠ACB=45°,∠AGC=90°﹣∠ACB,
∴∠AGC=90°﹣45°=45°,
∴∠ACB=∠AGC=45°,
∴AC=AG,
在△GAD與△CAE中,
∴△GAD≌△CAE,
∴∠ACE=∠AGC=45°,
∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,小明和小亮來到一河邊,想用遮陽帽和皮尺測量這條河的大致寬度,兩人在確保無安全隱患的情況下,先在河岸邊選擇了一點(diǎn)B(點(diǎn)B與河對岸岸邊上的一棵樹的底部點(diǎn)D所確定的直線垂直于河岸).
①小明在B點(diǎn)面向樹的方向站好,調(diào)整帽檐,使視線通過帽檐正好落在樹的底部點(diǎn)D處,如圖所示,這時(shí)小亮測得小明眼睛距地面的距離AB=1.7米;
②小明站在原地轉(zhuǎn)動180°后蹲下,并保持原來的觀察姿態(tài)(除身體重心下移外,其他姿態(tài)均不變),這時(shí)視線通過帽檐落在了DB延長線上的點(diǎn)E處,此時(shí)小亮測得BE=9.6米,小明的眼睛距地面的距離CB=1.2米.
根據(jù)以上測量過程及測量數(shù)據(jù),請你求出河寬BD是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點(diǎn)與原點(diǎn)重合,坐標(biāo)為(0,0)
(1)寫出點(diǎn)B的坐標(biāo);
(2)動點(diǎn)P從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度向終點(diǎn)B勻速運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)以每秒4個(gè)單位長度的速度沿射線CD方向勻速運(yùn)動,若P,Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動時(shí)間為t,當(dāng)t為何值時(shí),PQ∥BC;
(3)在Q的運(yùn)行過程中,當(dāng)Q運(yùn)動到什么位置時(shí),使△ADQ的面積為9,求此時(shí)Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分6分)
(1)(3分)(-3)2-|-|+(3.14-x)0
(2)(4分)先化簡,再求值:[(2x-y)2+(2x-y)(2x+y)]÷(4x),其中x=2,y=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中,裝有2個(gè)紅球和1個(gè)白球,這些球除了顏色外都相同.
(1)攪勻后從中隨機(jī)摸出一球,請直接寫出摸出紅球的概率;
(2)如果第一次隨機(jī)摸出一個(gè)球(不放回),充分?jǐn)噭蚝,第二次再從剩余的兩球中隨機(jī)摸出一個(gè)小球,求兩次都摸到紅球的概率.(用樹狀圖或列表法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB∥CD,點(diǎn)P是平面內(nèi)直線AB、CD外一點(diǎn)連接PA、PC。
(1)寫出所給的四個(gè)圖形中∠APC、∠PAB、∠PCD之間的數(shù)量關(guān)系;
(2)證明圖(1)和圖(3)的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(-2,-1)、B(2,0)、C(0,3),AC交軸于點(diǎn)D,AB交軸于點(diǎn)E.
(1)△ABC的面積為________;
(2)點(diǎn)E的坐標(biāo)為________;
(3)若點(diǎn)P的坐標(biāo)為(0,):
①線段EP的長為________(用含的式子表示);
②當(dāng)時(shí),求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由一些正整數(shù)組成的數(shù)表如下(表中下一行中數(shù)的個(gè)數(shù)是上一行中數(shù)的個(gè)數(shù)的2倍):
若規(guī)定坐標(biāo)號(m,n)表示第m行從左向右第n個(gè)數(shù),則(7,4)所表示的數(shù)是_____;(5,8)與(8,5)表示的兩數(shù)之積是_______;數(shù)2012對應(yīng)的坐標(biāo)號是_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com