【題目】2017浙江省溫州市)小黃準備給長8m,寬6m的長方形客廳鋪設瓷磚,現(xiàn)將其劃分成一個長方形ABCD區(qū)域Ⅰ(陰影部分)和一個環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設,且滿足PQAD,如圖所示.

1)若區(qū)域Ⅰ的三種瓷磚均價為300元/m2,面積為Sm2),區(qū)域Ⅱ的瓷磚均價為200元/m2,且兩區(qū)域的瓷磚總價為不超過12000元,求S的最大值;

2)若區(qū)域Ⅰ滿足BC=23,區(qū)域Ⅱ四周寬度相等.

①求AB,BC的長;

②若甲、丙兩瓷磚單價之和為300元/m2,乙、丙瓷磚單價之比為53,且區(qū)域Ⅰ的三種瓷磚總價為4800元,求丙瓷磚單價的取值范圍.

【答案】124;(2)①AB=4,CB=6;②丙瓷磚單價3x的范圍為1503x300元/m2

【解析】試題(1)根據(jù)題意可得300S+48﹣S200≤12000,解不等式即可;

2設區(qū)域四周寬度為a,則由題意(6﹣2a):(8﹣2a=23,解得a=1,由此即可解決問題;

設乙、丙瓷磚單價分別為5x/m23x/m2,則甲的單價為(300﹣3x)元/m2,由PQ∥AD,可得甲的面積=矩形ABCD的面積的一半=12,設乙的面積為s,則丙的面積為(12﹣s),由題意12300﹣3x+5xs+3x12﹣s=4800,解得s=,由0s12,可得012,解不等式即可

試題解析:(1)由題意300S+48﹣S200≤12000

解得S≤24

∴S的最大值為24

2設區(qū)域四周寬度為a,則由題意(6﹣2a):(8﹣2a=23,解得a=1

∴AB=6﹣2a=4,CB=8﹣2a=6

設乙、丙瓷磚單價分別為5x/m23x/m2,則甲的單價為(300﹣3x)元/m2,

∵PQ∥AD,

甲的面積=矩形ABCD的面積的一半=12,設乙的面積為s,則丙的面積為(12﹣s),

由題意12300﹣3x+5xs+3x12﹣s=4800

解得s=,

∵0s12,

∴012,

∴0x50,

丙瓷磚單價3x的范圍為03x150/m2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張正三角形紙片剪成四個小正三角形,得到個小正三角形,稱為第一次操作; 然后,將其中的一個正三角形再剪成四個小正三角形,共得到個小正三角形,稱為第二次操作;再將其中的一個正三角形再剪成四個小正三角形,共得到個小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到個小正三角形,則需要操作的次數(shù)是__________次.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與軸交于點,一次函數(shù)的圖像過點,且與軸及的圖像分別交于點、,點坐標為.

(1)求n的值及一次函數(shù)的解析式.

(2)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),

則稱點P′為點P“k屬派生點.例如:P(1,4)的“2屬派生點P′(1+2×4,2×1+4),即P′(9,6).

(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標為   ;

(Ⅱ)若點P“5屬派生點”P′的坐標為(3,﹣9),求點P的坐標;

(Ⅲ)若點Px軸的正半軸上,點P“k屬派生點P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠CAB=DBA,再添加一個條件,不一定能判定ABC≌△BAD的是( 。

A. AC=BDB. 1=2C. AD=BCD. C=D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點O是等邊三角形ABC內一點,AOB=110°,BOC=α, OC為邊作等邊三角形OCD,連接AD.

1α=150°時,試判斷AOD的形狀,并說明理由;

2探究:當a為多少度時,AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠B=C=DEF,點D、E、F分別在AB、AC上,且BD=CE.求證:DE=EF

證明:(請將下面的證明過程補充完整)

∵∠B+BDE+BED=180°______

DEF+FEC+BED=180°______

B=DEF(已知)

∴∠BDE=FEC______

BDECEF

B=C(已知)

BD=CE______

BDE=FEC______

∴△BDE≌△CEF______)(用字母表示)

DE=EF______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)分別填入它所屬于的集合的括號內.

9,,+4.3|0.5|,﹣(+7),18%,(13)4,﹣6,0

正分數(shù)集合{_________}

負分數(shù)集合{_________}

負整數(shù)集合{__________}

非負整數(shù)集合{________}

查看答案和解析>>

同步練習冊答案