【題目】觀察推理:如圖1,ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BDl,AEl,垂足分別為D、E

1)求證:AEC≌△CDB;

2)類比探究:如圖2,RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB,連接B′C,求AB′C的面積;

3)拓展提升:如圖3,∠E=60°EC=EB=4cm,點(diǎn)OBC上,且OC=3cm,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC2cm/s速度運(yùn)動(dòng),連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間.

【答案】1)證明見詳解;(218;(32.5

【解析】

(1)根據(jù)題干可知本題考查全等三角形證明,先利用等角的余角相等得到∠EAC=BCD,則可根據(jù)“AAS”證明△AEC≌△CD。

(2)根據(jù)圖2和條件,作B'DACD,先證明△B'AD≌△A B'D得到B'D=AC=6,

則可根據(jù)三角形面積公式計(jì)算;

(3)根據(jù)圖3,利用旋轉(zhuǎn)的性質(zhì)得∠FOP=120°,OP=OF,

再證明△BOF≌△CPO得到PC=OB=1

EP=CECP=5,然后計(jì)算點(diǎn)P運(yùn)動(dòng)的時(shí)間t

(1)∵∠ACB=90°,

∴∠ACE+DCB=90°,

BDl,AEl

∴∠AEC=BDC=90°,

∴∠EAC+∠ACE=90°,

∴∠EAC=DCB,

又∵AC=BC

∴△AEC≌△CDB(AAS);

(2)如圖2,作B'DACD

∵斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB',

AB=AB,∠BAB=90°,

即∠BAC+∠BAC=90°,

而∠B+∠CAB=90°,

∴∠B=B'AC,

∴△BAD≌△A BD(AAS),

BD=AC=6,

∴△A BC的面積=6×6÷2=18;

(3)如圖3,由旋轉(zhuǎn)知,OP=OF,

∵△BCE是等邊三角形,

∴∠CBE=BCE=60°

∴∠OCP=FBO=120°,

CPO+∠COP=60°,

∵∠POF=120°,

∴∠COP+∠BOF=60°,

∴∠CPO=BOF,在△BOF和△PCO

OBF=PCO=120°,BOF=CPO,OF=OP

∴△BOF≌△PCO

CP=OB,

EC=BC=4cm,OC=3cm,

OB=BC-OC=1,

CP=1

EP=CECP=5,

∴點(diǎn)P運(yùn)動(dòng)的時(shí)間t=5÷2=2.5秒。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊

1)如圖(1),若,現(xiàn)有兩點(diǎn)、分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),沿三角形的邊順時(shí)針運(yùn)動(dòng),已知點(diǎn)的速度為,點(diǎn)的速度為.當(dāng)點(diǎn)第一次到達(dá)點(diǎn)時(shí),、同時(shí)停止運(yùn)動(dòng).點(diǎn),運(yùn)動(dòng)______秒后,為等腰三角形.

2)如圖,點(diǎn)位于等邊的內(nèi)部,且.將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)

依題意,補(bǔ)全圖形;

,,求的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的試驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是(  )

A. 石頭、剪刀、布的游戲中,小明隨機(jī)出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C. 暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為5的正方形ABCD中,以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長(zhǎng)為3的所有大小不同的等腰三角形的個(gè)數(shù)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a0)過點(diǎn)A(1,﹣3)、B(3,﹣3)、C(﹣1,5),頂點(diǎn)為M點(diǎn).在拋物線上是找一點(diǎn)P使∠POM=90°,則P點(diǎn)的坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,y2)(點(diǎn)B在點(diǎn)A的右側(cè));

②對(duì)稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請(qǐng)根據(jù)以上信息求出二次函數(shù)表達(dá)式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),ACM,CBN是等邊三角形,直線AN,MC交于點(diǎn)E,直線BM、CN交與F點(diǎn)。

(1)求證:AN=BM;

(2)求證:CEF為等邊三角形;

(3)ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)900,其他條件不變,在圖2中補(bǔ)出符合要求的圖形,并判斷第(1)(2)兩小題的結(jié)論是否仍然成立,不要求證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABCDEF,下列條件中①∠B=E=90°,AC=DF;②∠B=E,AB=DE,AC=DF;③在RtABCRtDEF中,BC=EF,AC=DF;④∠A=D,∠B=E,∠C=F;⑤∠A=D,BC=EF,∠C=F,能證明ABC≌△DEF的是(

A.B.③⑤C.①②③⑤D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

同步練習(xí)冊(cè)答案