【題目】如圖,在中,,點(diǎn)DBC邊上的一點(diǎn),,,

(1)求ACAB的長;

(2)求的值.

【答案】(1);(2)

【解析】

試題(1)在Rt△ACD中,利用,CD=6求出AD的長,再求出AC的長.再在Rt△ABC中,利用==求出BC的長再求出AB的長;(2)過點(diǎn)D作DH⊥AB于點(diǎn)H,利用S△ABD=AB·DH=BD·AC,其中AB、BD、AC都可知,則可求出DH,再在Rt△ADH中利用正弦三角形函數(shù)定義求解.

解:(1)∵Rt△ACD中,cos∠ADC==,CD=6,

∴AD=10,

Rt△ACD,AC==8.

又∵在Rt△ABC,==,

∴BC=12,

AB==4.

(2)過點(diǎn)D作DH⊥AB于點(diǎn)H,

∴S△ABD=AB·DH=BD·AC,

其中AB=4,BD=BC-CD=6,AC=8,

∴DH==,

∴在Rt△ADH中,sin∠BAD==.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC上的點(diǎn),且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,則EC=( 。

A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm

【答案】A

【解析】試題分析:根據(jù)平行線分線段成比例定理得到=,然后利用比例性質(zhì)求EC的長.

解:∵DE∥BC,

=,即=

∴EC=0.9cm).

故選A

考點(diǎn):平行線分線段成比例.

型】單選題
結(jié)束】
6

【題目】點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC,AB=10cm,則AC等于(

A. 6 cm B. cm C. cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC2,點(diǎn)MBC上,連接AM,作∠AMN=∠AMB,點(diǎn)N在直線AD上,MNCD于點(diǎn)E

(1)求證:△AMN是等腰三角形;

(2)求證:AM22BMAN;

(3)當(dāng)MBC中點(diǎn)時,求ME的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“陽光體育活動”促進(jìn)了學(xué)校體育活動的開展,小杰在一次鉛球比賽中,鉛球出手以后的軌跡是拋物線的一部分(如圖所示),已知鉛球出手時離地面1.6米,鉛球離投擲點(diǎn)3米時達(dá)到最高點(diǎn),在離投擲點(diǎn)8米處落地,

(1)請求出此軌跡所在拋物線的關(guān)系式.

(2)設(shè)拋物線與X軸另一個交點(diǎn)是E,點(diǎn)Q是對稱軸上的一個動點(diǎn),求當(dāng)△EBQ的周長最短時點(diǎn)Q的坐標(biāo).

(3)在拋物線上是否存在點(diǎn)G使得SDEG19.5,若存在請求出點(diǎn)G的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某場足球比賽中,球員甲在球門正前方點(diǎn)O處起腳射門,在不受阻擋的情況下,足球沿如圖所示的拋物線飛向球門中心線,當(dāng)足球飛行的水平距離為2 m時,高度為,落地點(diǎn)AO點(diǎn)12 m.已知點(diǎn)O距球門9 m,球門的橫梁高為2.44 m

1)飛行的足球能否射入球門?通過計(jì)算說明理由;

2)若守門員乙站在球門正前方2 m處,他跳起時能摸到的最大高度為2.52 m,他能阻止此次射門嗎?并寫明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019級即將迎來中考,很多家長都在為孩子準(zhǔn)備營養(yǎng)午餐.一家快餐店看準(zhǔn)了商機(jī),在55號推出了AB,C三種營養(yǎng)套餐.套餐C單價比套餐A5元,三種套餐的單價均為整數(shù),其中A套餐比C套餐少賣12份,B套餐比C套餐少賣6份,且C套餐當(dāng)天賣出的數(shù)量大于26且不超過32,當(dāng)天總銷售量為偶數(shù)且當(dāng)天銷售額達(dá)到了1830元,商家發(fā)現(xiàn)C套餐很受歡迎,因此在6號加推出了C套餐升級版D套餐,四種套餐同時售賣,A套餐比5號銷售量減少,C套餐比5號銷售量增加,且A減少的份數(shù)比C套餐增加的份數(shù)多5份,B套餐銷售量不變,由于商家人手限制,兩天的總銷售量相同,則其他套餐單價不變的情況下,D套餐至少比C套餐費(fèi)貴______時,才能使6號銷售額達(dá)到1950元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C:連接BC,點(diǎn)P為線段BC上方拋物線上的一動點(diǎn),連接OPBC于點(diǎn)Q

1)如圖1,當(dāng)值最大時,點(diǎn)E為線段AB上一點(diǎn),在線段BC上有兩動點(diǎn)M,NMN上方),且MN=1,求PM+MN+NE-BE的最小值;

2)如圖2,連接AC,將AOC沿射線CB方向平移,點(diǎn)A,C,O平移后的對應(yīng)點(diǎn)分別記作A1,C1,O1,當(dāng)C1B=O1B時,連接A1B、O1B,將A1O1B繞點(diǎn)O1沿順時針方向旋轉(zhuǎn)90°后得A2O1B1在直線x=上是否存在點(diǎn)K,使得A2B1K為等腰三角形?若存在,直接寫出點(diǎn)K的坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長方形OABC的邊OA、OC分別在x軸、y軸上,B點(diǎn)坐標(biāo)是(8,4),將AOC沿對角線AC翻折得ADCADBC相交于點(diǎn)E

1)求證:CDE≌△ABE

2)求E點(diǎn)坐標(biāo);

3)如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿著折線ABCO運(yùn)動(到點(diǎn)O停止),是否存在點(diǎn)P,使得POA的面積等于ACE的面積,若存在,直接寫出點(diǎn)P坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

同步練習(xí)冊答案