科目: 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,點為線段的中點,的平分線與軸相較于點,、兩點關于軸對稱.
(1)一動點從點出發(fā),沿適當的路徑運動到直線上的點,再沿適當的路徑運動到點處.當的運動路徑最短時,求此時點的坐標及點所走最短路徑的長.
(2)點沿直線水平向右運動得點,平面內是否存在點使得以、、、為頂點的四邊形為菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周長.
(2)若∠DBC=45°,對角線AC、BD交于點O,F為AE上一點,且AF=2EO,求證:CF=AB.
查看答案和解析>>
科目: 來源: 題型:
【題目】開學初期,天氣炎熱,水杯需求量大.雙福育才中學門口某超市購進一批水杯,其中A種水杯進價為每個15元,售價為每個25元;B種水杯進價為每個12元,售價為每個20元
(1)該超市平均每天可售出60個A種水杯,后來經過市場調查發(fā)現,A種水杯單價每降低1元,則平均每天的銷量可增加10個.為了盡量讓學生得到更多的優(yōu)惠,某天該超市將A種水杯售價調整為每個m元,結果當天銷售A種水杯獲利630元,求m的值.
(2)該超市準備花費不超過1600元的資金,購進A、B兩種水杯共120個,其中B種水杯的數量不多于A種水杯數量的兩倍.請為該超市設計獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線l1:y=kx+b與直線l2:y=2x﹣4的交點M的縱坐標為2,且與直線y=﹣x﹣2交x軸于同一點.
(1)求直線l1的表達式;
(2)在給出的平面直角坐標系中作出直線l1的圖象,并求出它與直線l2及x軸圍成圖形的面積;
(3)根據圖象,直接寫出關于x的不等式kx+b>0>2x﹣4的解集
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,點為線段的中點,的平分線與軸相較于點,、兩點關于軸對稱.
(1)一動點從點出發(fā),沿適當的路徑運動到直線上的點,再沿適當的路徑運動到點處.當的運動路徑最短時,求此時點的坐標及點所走最短路徑的長.
(2)點沿直線水平向右運動得點,平面內是否存在點使得以、、、為頂點的四邊形為菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在校園歌手大賽中,甲、乙兩位同學的表現分外突出,現場A、B、C、D、E、F六位評委的打分情況以及隨機抽取的50名同學的民意調查結果分別如下統計表和不完整的條形統計圖:(說明:隨機抽取的50名同學每人必須從“好”、“較好”、“一般”中選一票投給每個選手)
A | B | C | D | E | F | |
甲 | 89 | 97 | 90 | 93 | 95 | 94 |
乙 | 89 | 92 | 90 | 97 | 94 | 94 |
(1)a= ,六位評委對乙同學所打分數的中位數是 ,并補全條形統計圖;
(2)學校規(guī)定評分標準如下:去掉評委評分中最高和最低分,再算平均分并將平均分與民意測評分按2:3計算最后得分.求甲、乙兩位同學的最后得分.(民意測評分=“好”票數×2+“較好”票數×1+“一般”票數×0)
查看答案和解析>>
科目: 來源: 題型:
【題目】國防教育和素質拓展期間,某天小明和小亮分別從校園某條路的A,B兩端同時相向出發(fā),當小明和小亮第一次相遇時,小明覺得自己的速度太慢便決定提速至原速的倍,當他到達B端后原地休息,小亮勻速到達A端后,立即按照原速返回B端(忽略掉頭時間).兩人相距的路程y(米)與小亮出發(fā)時間t(秒)之間的關系如圖所示,當小明到達B端后,經過_____秒,小亮回到B端.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=4,將菱形OABC繞原點順時針旋轉105°至OA′B′C′的位置,則點B′的坐標為( )
A. (2,﹣2)B. (,-)C. (2,﹣2)D. (,-)
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線與軸交于點C(0,3),其對稱軸與軸交于點A(2,0).
(1)求拋物線的解析式;
(2)將拋物線適當平移,使平移后的拋物線的頂點為D(0,).已知點B(2,2),若拋物線與△OAB的邊界總有兩個公共點,請結合函數圖象,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com