分析 (1)由∠BAC=∠DAE,等式左右兩邊都加上∠CAE,得到一對角相等,再由AB=AC,AF為公共邊,利用SAS可得出三角形ABE與三角形ACD全等;
(2)由M與N分別為BE,CD的中點,且BE=CD,可得出ME=ND,由三角形ABE與三角形ACD全等,得到對應(yīng)邊AE=AD,對應(yīng)角∠AEB=∠ADC,利用SAS可得出三角形AME與三角形AND全等,利用全等三角形的對應(yīng)邊相等可得出AM=AN,即三角形AMN為等腰三角形.
解答 證明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD,
在△ABE和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△ACD(SAS);
(2)∵M、N分別為BE、CD的中點,且BE=CD,
∴ME=ND,
∵△ABE≌△ACD,
∴∠AEM=∠ADC,AE=AD,
在△AEM和△ADN中,$\left\{\begin{array}{l}{ME=ND}\\{∠AEM=∠ADN}\\{AE=AD}\end{array}\right.$,
∴△AEM≌△ADN(SAS),
∴AM=AN,
即△AMN為等腰三角形.
點評 此題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2對 | B. | 3對 | C. | 4對 | D. | 5對 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com