4.已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=axg(x)(a>0,且a≠1),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若數(shù)列 {$\frac{f(n)}{g(n)}$}的前n項(xiàng)和大于62,則n的最小值( 。
A.5B.6C.7D.8

分析 令h(x)=$\frac{f(x)}{g(x)}$,由題意可知a>1,求出a=2,由此可知Sn的表達(dá)式,前n項(xiàng)和大于62,求出n的最小值.

解答 解:令h(x)=$\frac{f(x)}{g(x)}$,
則h′(x)=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$>0,
故h(x)=ax單調(diào)遞增,
所以a>1,
 又$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=a+$\frac{1}{a}$=$\frac{5}{2}$.
解得a=2,
則$\frac{f(n)}{g(n)}$=2n,
其前n項(xiàng)和Sn=2n-2,
由2n-2>62,
得n>6.
故選:C.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、等比數(shù)列的前n和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-3≤0}\\{x+y-3≥0}\\{x-2y+3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最大值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1,平面五邊形ABCDE中,AB∥CE,且$AE=2,∠AEC={60°},CD=ED=\sqrt{7}$,$cos∠EDC=\frac{5}{7}$.將△CDE沿CE折起,使點(diǎn)D到P的位置如圖2,且$AP=\sqrt{3}$,得到四棱錐P-ABCE.

(1)求證:AP⊥平面ABCE;
(2)記平面PAB與平面PCE相交于直線l,求證:AB∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+3≥0}\\{y≥x}\\{x≥1}\end{array}\right.$,則z=$\sqrt{{x}^{2}+{y}^{2}}$的最小值為( 。
A.3B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知a=25,b=25,則a,b的等比中項(xiàng)為±25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知正數(shù)a,b滿足a+b=4,則曲線f(x)=lnx+$\frac{x}$在點(diǎn)(a,f(a))處的切線的傾斜角的取值范圍為(  )
A.[$\frac{π}{4}$,+∞)B.[$\frac{π}{4}$,$\frac{5π}{12}$)C.[$\frac{π}{4}$,$\frac{π}{2}$)D.[$\frac{π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{AB}$=(m,1),$\overrightarrow{BC}$=(2-m,-4),若$\overrightarrow{AB}$•$\overrightarrow{AC}$>11,則m的取值范圍為(7,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=2cos(ωx+ϕ)(ω>0且|ϕ|<$\frac{π}{2}$),在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞增,且函數(shù)值從-2增大到2,那么此函數(shù)圖象與y軸交點(diǎn)的縱坐標(biāo)為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問(wèn)題:“今有委米依垣內(nèi)角,下周八尺,高五尺,問(wèn):積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長(zhǎng)為8尺,米堆的高為5尺,米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,則堆放的米約有22斛(結(jié)果精確到個(gè)位).

查看答案和解析>>

同步練習(xí)冊(cè)答案