1.已知變量x,y(x,y∈R)滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥5}\\{y-3≤0}\end{array}}\right.$,若不等式(x+y)2≥c(x2+y2)(c∈R)恒成立,則實(shí)數(shù)c的最大值為$\frac{25}{13}$.

分析 利用分式不等式的性質(zhì)將不等式進(jìn)行分類,結(jié)合線性規(guī)劃以及恒成立問題.利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由題意知:可行域如圖,
又∵(x+y)2≥c(x2+y2)(在可行域內(nèi)恒成立).
且c≤$\frac{(x+y)^{2}}{{x}^{2}+{y}^{2}}$=1+$\frac{2xy}{{x}^{2}+{y}^{2}}$=1+$\frac{\frac{2y}{x}}{1+(\frac{y}{x})^{2}}$=1+$\frac{2}{\frac{1}{\frac{y}{x}}+\frac{y}{x}}$,
故只求z=1+$\frac{2}{\frac{1}{\frac{y}{x}}+\frac{y}{x}}$的最大值即可.
設(shè)k=$\frac{y}{x}$,則有圖象知A(2,3),
則OA的斜率k=$\frac{3}{2}$,BC的斜率k=1,
由圖象可知即1≤k≤$\frac{3}{2}$,
∵z=k+$\frac{1}{k}$在[1,$\frac{3}{2}$]上為增函數(shù),
∴當(dāng)k=$\frac{3}{2}$時(shí),z取得最大值z(mì)=$\frac{3}{2}$+$\frac{2}{3}$=$\frac{13}{6}$,
此時(shí)1+$\frac{2}{z}$=1+$\frac{2}{\frac{13}{6}}$=1+$\frac{12}{13}$=$\frac{25}{13}$,
故c≤$\frac{25}{13}$,
故c的最大值為$\frac{25}{13}$,
故答案為:$\frac{25}{13}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃、基本不等式、還有函數(shù)知識(shí)考查的綜合類題目.在解答過(guò)程當(dāng)中,同學(xué)們應(yīng)該仔細(xì)體會(huì)數(shù)形結(jié)合的思想、函數(shù)思想、轉(zhuǎn)化思想還有恒成立思想在題目中的體現(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并予以證明;
(3)求f(x)在[3,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,ABC-A'B'C'為直三棱柱,M為CC的中點(diǎn),N為AB的中點(diǎn),AA'=BC=3,AB=2,AC=$\sqrt{13}$.
(1)求證:CN∥平面AB'M;
(2)求三棱錐B'-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若tanα•tanβ=3,且$sinα•sinβ=\frac{3}{5}$,則cos(α-β)的值為(  )
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,角A、B、C的對(duì)邊a,b,c滿足b2+c2=a2+bc,且bc=8,則△ABC的面積等于(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題不正確的是( 。
A.若m⊥n,m⊥α,n?α,則n∥αB.若m⊥β,α⊥β,則m∥α或m?α
C.若m∥α,α∥β,則m∥βD.若m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,點(diǎn)M是AB的中點(diǎn),則點(diǎn)A到平面A1DM的距離為(  )
A.$\frac{\sqrt{6}}{6}$aB.$\frac{\sqrt{6}}{3}$aC.$\frac{\sqrt{2}}{2}$aD.$\frac{1}{2}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)a,b為不重合的兩條直線,α,β為不重合的兩個(gè)平面,給
出下列命題:
(1)若a∥α且b∥α,則a∥b;       
(2)若a∥α且a⊥β,則α∥β
(3)若α⊥β,則一定存在平面γ,使得γ⊥α,γ⊥β
(4)若α⊥β,則一定存在直線l,使得l⊥α,l∥β
上面命題中,所有真命題的序號(hào)是(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知復(fù)數(shù)z=(a-i)(1+i)(a∈R,i是虛數(shù)單位)是實(shí)數(shù),則a=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案