【題目】《城市規(guī)劃管理意見(jiàn)》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開(kāi)”,此消息在網(wǎng)上一石激起千層浪.各種說(shuō)法不一而足,為了了解居民對(duì)“開(kāi)放小區(qū)”認(rèn)同與否,從[25,55]歲人群中隨機(jī)抽取了n人進(jìn)行問(wèn)卷調(diào)查,得如下數(shù)據(jù):

組數(shù)

分組

認(rèn)同人數(shù)

認(rèn)同人數(shù)占
本組人數(shù)比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽9人參與座談會(huì),然后從這9人中選2名作為組長(zhǎng),組長(zhǎng)年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列和期望.

【答案】
(1)解:設(shè)[25,30)年齡段人數(shù)為x人,

由題意 ,解得x=200,

∵[25,30)年齡段人數(shù)的頻率為0.04×5=0.2,

,解得n=1000.

∵[30,35)年齡段人數(shù)的頻率為:1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,

∴[30,35)年齡段人數(shù)為0.3×1000=300,

∴p= =0.65,

∵[40,45)年齡段人數(shù)的頻率為0.03×5=0.15,

∴[40,45)年齡段人數(shù)為0.15×1000=150,

∴a=150×0.4=60.

完成頻率分布直方圖如下:


(2)解:由(1)得[40,45)年齡段中認(rèn)同人數(shù)為60人,[45,50)兩段中認(rèn)同人數(shù)為30人,

按分層抽樣的方法抽9人參與座談會(huì),[40,45)年齡段中抽取6人,[45,50)年齡段中抽取3人,

ξ的可能取值為0,1,2,

P(ξ=0)= = ,P(ξ=1)= = ,

P(ξ=2)= = ,

ξ的分布列為:

ξ

0

1

2

P

Eξ= =


【解析】(1)由頻率= ,利用已知條件能完成所給頻率分布直方圖,并能求出n,a,p.(2)由[40,45)年齡段中認(rèn)同人數(shù)為60人,[45,50)兩段中認(rèn)同人數(shù)為30人,按分層抽樣的方法抽9人參與座談會(huì),[40,45)年齡段中抽取6人,[45,50)年齡段中抽取3人,ξ的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】掌握頻率分布直方圖和離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),且的周長(zhǎng)為8.

(1)求橢圓的方程;

(2)若經(jīng)過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),且,試判斷是否為定值?若為定值,試求出該定值;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人同時(shí)生產(chǎn)內(nèi)徑為的一種零件,為了對(duì)兩人的生產(chǎn)質(zhì)量進(jìn)行評(píng)比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰(shuí)生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為直角梯形, , , , ,四邊形為矩形.

(1)求證:平面平面;

(2)線段上是否存在點(diǎn),使得二面角的大小為?若存在,確定點(diǎn)的位置并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是等比數(shù)列,公比為q(q>0且q≠1),4a1 , 3a2 , 2a3成等差數(shù)列,且它的前4項(xiàng)和為S4=15.
(1)求{an}通項(xiàng)公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是圓O的直徑.過(guò)點(diǎn)C作圓O的切線交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , 中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一動(dòng)點(diǎn), 到點(diǎn)的距離減去它到軸距離的差都是

)求動(dòng)點(diǎn)的軌跡方程.

)設(shè)動(dòng)點(diǎn)的軌跡為,已知定點(diǎn)、,直線、與軌跡的另一個(gè)交點(diǎn)分別為

i)點(diǎn)能否為線段的中點(diǎn),若能,求出直線的方程,若不能,說(shuō)明理由.

ii)求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)表明,家庭的月理財(cái)投入(單位:千元)與月收入(單位:千元)之間具有線性相關(guān)關(guān)系.某銀行隨機(jī)抽取5個(gè)家庭,獲得第)個(gè)家庭的月理財(cái)投入與月收入的數(shù)據(jù)資料,經(jīng)計(jì)算得

(1)求關(guān)于的回歸方程

(2)判斷之間是正相關(guān)還是負(fù)相關(guān);

(3)若某家庭月理財(cái)投入為5千元,預(yù)測(cè)該家庭的月收入.

附:回歸方程的斜率與截距的最小二乘估計(jì)公式分別為:

,其中為樣本平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案