分析 分別取AB,CD的中點E,F(xiàn),連接相應的線段,由條件可知,球心G在EF上,可以證明G為EF中點,
求出球的半徑,再求球的表面積.
解答 解:分別取AB,CD的中點E,F(xiàn),
連接相應的線段CE,ED,EF,
由條件,AB=CD=$\sqrt{6}$,
BC=AC=AD=BD=2,
可知△ABC與△ADB,
都是等腰三角形,
AB⊥平面ECD,∴AB⊥EF,
同理CD⊥EF,
∴EF是AB與CD的公垂線,
球心G在EF上,
可以證明G為EF中點,(△AGB≌△CGD)
DE=$\sqrt{{2}^{2}{-(\frac{\sqrt{6}}{2})}^{2}}$=$\frac{\sqrt{10}}{2}$,DF=$\frac{\sqrt{6}}{2}$,EF=$\sqrt{{(\frac{\sqrt{10}}{2})}^{2}{-(\frac{\sqrt{6}}{2})}^{2}}$=1,
∴GF=$\frac{1}{2}$,
球半徑DG=$\sqrt{{(\frac{1}{2})}^{2}{+(\frac{\sqrt{6}}{2})}^{2}}$=$\frac{\sqrt{7}}{2}$,
∴外接球的表面積為4π×DG2=7π.
故答案為:7π.
點評 本題考查了球的內接幾何體以及球的表面積問題,也考查空間想象能力與計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{4}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com