19.已知奇函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,點(diǎn)M的坐標(biāo)為(1,0)且△MNE為等腰直角三角形,當(dāng)A取最大值時(shí),f($\frac{1}{3}$)等于( 。
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

分析 根據(jù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù),可得f(0)=0,求出φ=$\frac{π}{2}$,
根據(jù)圖象過點(diǎn)M的坐標(biāo)為(1,0)求出ω和E的坐標(biāo),根據(jù)A取最大值時(shí),確定ω的值.可得f(x)解析式,從而求解f($\frac{1}{3}$)的值.

解答 解:由題意,f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù),可得f(0)=0,
∴φ=$\frac{π}{2}$,
可得f(x)=-Asinωx,
其周期T=$\frac{2π}{ω}$.
∵圖象過點(diǎn)M的坐標(biāo)為(1,0),
可得sinω=0,
那么ω=kπ,k∈Z,
由三角函數(shù)性質(zhì)可得:E的坐標(biāo)為(1+$\frac{π}{2ω}$,A)
∵△MNE為等腰直角三角形,
∴A=$\frac{π}{2ω}$,
又∵ω>0,
當(dāng)k=1時(shí),ω取得最小值為π,此時(shí)A最大為$\frac{π}{2π}=\frac{1}{2}$.
∴函數(shù)f(x)=-$\frac{1}{2}$sinπx;
那么f($\frac{1}{3}$)=$-\frac{1}{2}$sin$\frac{π}{3}$=$-\frac{\sqrt{3}}{4}$.
故選A.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,f(x)是奇函數(shù),可得f(0)=0,
求出E的坐標(biāo)為(1+$\frac{π}{2ω}$,A)是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn,a3=3,且λSn=anan+1,在等比數(shù)列{bn}中,b1=2λ,b3=a15+1.
(Ⅰ)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項(xiàng)和為Tn,且$({S_n}+\frac{n}{2}){c_n}=1$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{a}{x}+1,(x>1)}\\{-{x}^{2}+2x(x≤1)}\end{array}\right.$在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[0,1]B.(0,1]C.[-1,1]D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)P為曲線C1上動(dòng)點(diǎn),Q為曲線C2上動(dòng)點(diǎn),則稱|PQ|的最小值為曲線C1,C2之間的距離,記作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,則d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,則d(C3,C4)=$\sqrt{2}$(1-ln2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={1,2,3,4,9},N={x|x∈M且$\sqrt{x}$∈M},則M∩N中的元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=||x|-2|+x-3.
(1)畫出y=f(x)的圖象.
(2)解不等式f(x)<$\frac{1}{2}$x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,四邊形ABCD是菱形,且∠A=60°,AB=2,E為AB的中點(diǎn),將四邊形EBCD沿DE折起至EDC1B1,如圖2.

(Ⅰ) 求證:平面ADE⊥平面AEB1;
(Ⅱ) 若二面角A-DE-C1的大小為$\frac{π}{3}$,求三棱錐C1-AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.三棱錐D-ABC中,AB=CD=$\sqrt{6}$,其余四條棱均為2,則三棱錐D-ABC的外接球的表面積為7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},則(∁UA)∪B為( 。
A.{0,2,3,4}B.{4}C.{1,2,4}D.{0,2,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案