6.設(shè)P:2<x<4,Q:lnx<e,則P是Q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 解關(guān)于Q的不等式,根據(jù)集合的包含關(guān)系判斷即可.

解答 解:P:2<x<4,
由lnx<e,解得:0<x<ee
故Q:0<x<ee,
而(2,4)?(0,ee),
故P是Q成立的充分不必要條件,
故選:A.

點(diǎn)評 本題考查了集合的包含關(guān)系,考查不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.三棱錐D-ABC中,AB=CD=$\sqrt{6}$,其余四條棱均為2,則三棱錐D-ABC的外接球的表面積為7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},則(∁UA)∪B為( 。
A.{0,2,3,4}B.{4}C.{1,2,4}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是一個平面內(nèi)的三個向量,其中$\overrightarrow{a}$=(1,2)
(1)|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{c}∥\overrightarrow{a}$,求$\overrightarrow{a}•\overrightarrow{c}$
(2)若|$\overrightarrow$|=$\frac{3\sqrt{5}}{2}$,且$\overrightarrow{a}+2\overrightarrow$與3$\overrightarrow{a}$-$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若關(guān)于x的不等式f(x)≤$\frac{1}{2}$x-1在[1,+∞)上恒成立,求a的取值范圍;
(2)設(shè)函數(shù)g(x)=$\frac{f(x)}{x}$,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知F為拋物線4y2=x的焦點(diǎn),點(diǎn)A,B都是拋物線上的點(diǎn)且位于x軸的兩側(cè),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=15(O為原點(diǎn)),則△ABO和△AFO的面積之和的最小值為( 。
A.$\frac{1}{8}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{65}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=x2+ax+b+1,關(guān)于x的不等式f(x)-(2b-1)x+b2<1的解集為(b,b+1),其中b≠0.
(Ⅰ)求a的值;
(Ⅱ)令g(x)=$\frac{f(x)}{x-1}$,若函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),求實數(shù)k的取值范圍,并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合$A=\left\{{(x,y)\left|{\left\{\begin{array}{l}x-y-1≤0\\ 3x-y+1≥0,x,y∈R\\ 3x+y-1≤0\end{array}\right.}\right.}\right\}$,則A表示的平面區(qū)域的面積是(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{-x}+a,x≤0}\\{(x-1)^{3}+1,x>0}\end{array}$,且?x0∈[2,+∞)使得f(-x0)=f(x0),若對任意的x∈R,f(x)>b恒成立,則實數(shù)b的取值范圍為( 。
A.(-∞,0)B.(-∞,0]C.(-∞,a)D.(-∞,a]

查看答案和解析>>

同步練習(xí)冊答案