18.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$8-\frac{π}{2}$.

分析 由題意三視圖可知,幾何體是棱長(zhǎng)為2的正方體,截取兩個(gè)四分之一圓柱,即可求出幾何體的體積.

解答 解:由題意可知幾何體是棱長(zhǎng)為2的正方體,截取兩個(gè)四分之一圓柱,
所以幾何體的體積為V=23-$\frac{1}{2}π•$12=$8-\frac{π}{2}$.
故答案為:$8-\frac{π}{2}$

點(diǎn)評(píng) 本題考查三視圖與幾何體的關(guān)系,考查空間想象能力與計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知過點(diǎn)(-1,-1)的直線與圓x2+y2-2x+6y+6=0有兩個(gè)公共點(diǎn),則該直線的斜率的取值范圍為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在測(cè)試中,客觀題難度的計(jì)算公式為Pi=$\frac{{R}_{i}}{N}$,其中Pi為第i題的難度,Ri為答對(duì)該題的人數(shù),N為參加測(cè)試的總?cè)藬?shù).
現(xiàn)對(duì)某校髙三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如表所示:
題號(hào)12345
考前預(yù)估難度Pi0.90.80.70.60.4
測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
題號(hào)
學(xué)生編號(hào)
12345
1×
2×
3×
4××
5
6×××
7××
8××××
9××
10×
(I)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);
題號(hào)12345
實(shí)測(cè)答對(duì)人數(shù)
實(shí)測(cè)難度
(Ⅱ)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(Ⅲ)定義統(tǒng)計(jì)量S=$\frac{1}{n}$[(P′1-P12+(P′2-P22+…+(P′n-Pn2],其中P′i為第i題的實(shí)測(cè)難度,Pi為第i題的預(yù)估難度(i=l,2,…,n),規(guī)定:若S<0.05,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科,總分為200分,現(xiàn)從上線的考生中隨機(jī)隨機(jī)抽取20人,將其成績(jī)用莖葉圖記錄如下:
(Ⅰ)計(jì)算上線考生中抽取的男生成績(jī)的方差s2;(結(jié)果精確到小數(shù)點(diǎn)后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)正實(shí)數(shù)a,b滿足a+b=1,則( 。
A.$\frac{1}{a}+\frac{1}$有最大值4B.$\sqrt{ab}$有最小值 $\frac{1}{2}$C.$\sqrt{a}+\sqrt$有最大值$\sqrt{2}$D.a2+b2有最小值$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,an+1-an+anan+1=0(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:a1+a1a2+a1a2a3+…+a1a2…an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=lnx與函數(shù)g(x)=ax2-a的圖象在點(diǎn)(1,0)的切線相同,則實(shí)數(shù)a的值為(  )
A.1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算:
(Ⅰ)(1-2i)(3+4i)(-2+i)
(Ⅱ) (1+2i)÷(3-4i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.己知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則a=( 。
A.$\sqrt{19}$B.$\sqrt{13}$C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案