確定函數(shù)y=x-
1
x
在區(qū)間(-∞,0)上的單調(diào)性,并用定義證明.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)x1<x2<0,則f(x1)-f(x2)=
(x1-x2)(1+x1x2)
x1x2
,結(jié)合已知可判斷f(x1)>f(x2),從而可證.
解答: 解:函數(shù)f(x)在(-∞,0)上遞增;
證明:設(shè)x1<x2<0,
則f(x1)-f(x2)=x1-
1
x1
-x2+
1
x2
=(x1-x2)+(
1
x2
-
1
x1

=(x1-x2)+
x1-x2
x1x2
=
(x1-x2)(1+x1x2)
x1x2
,
∵x1<x2<0,
∴x1-x2<0,x1x2>0,1+x1x2>0
(x1-x2)(1+x1x2)
x1x2
>0
即f(x1)>f(x2
∴函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)遞增.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性的定義在證明函數(shù)的單調(diào)性中的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=-3,an=2an-1+2n+3(n≥2.且n∈N*
(1)求a2,a3的值;
(2)設(shè)bn=
an+3
2n
(n∈N*)
,證明:{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
2x-1
x+3
≥1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ae -x 為偶函數(shù),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,1),
b
=(0,-1),
c
=(k,
3
),若(
a
-2
b
)∥
c
,則實(shí)數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},求:
(Ⅰ)B∪C,∁A(B∪C); 
(Ⅱ)A∩CA(B∪C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-x2-4x+5
的定義域?yàn)锳,函數(shù)g(x)=
4-x2
x-1
的定義域?yàn)锽,求A∩B,A∪B,∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x|x2+x-6=0},N={x|ax-1=0},且N⊆M,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
(
x
-1)
0
4-2x
的定義域?yàn)椋ā 。?/div>
A、(0,1]∪(1,2]
B、[0,1)∪(1,2)
C、[0,1)∪(1,2]
D、[0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案