【題目】已知橢圓:()的離心率為,,,,的面積為.
(1)求橢圓的方程;
(2)設(shè)是橢圓上的一點(diǎn),直線(xiàn)與軸交于點(diǎn),直線(xiàn)與軸交于點(diǎn),求證:為定值.
【答案】(1)(2)見(jiàn)解析;
【解析】
(1)由離心率和的面積構(gòu)建方程組,求出,代入標(biāo)準(zhǔn)方程,得答案;
(2)設(shè)點(diǎn),由其在橢圓上得,考慮PA,PB的斜率存在與否,利用分類(lèi)討論是否為0,由直線(xiàn)的兩點(diǎn)式分別表示PA,PB的直線(xiàn)方程,進(jìn)而表示,化簡(jiǎn)得答案.
(1)由題可知離心率,,
解之得,所以橢圓的方程為;
(2)證明:設(shè)點(diǎn),因?yàn)辄c(diǎn)P在橢圓C上,所以,即
當(dāng)時(shí),因?yàn)?/span>,,所以直線(xiàn)PA的方程為
令得,所以
因?yàn)橐驗(yàn)?/span>,,所以直線(xiàn)PA的方程為
令得,所以
則
所以
因?yàn)?/span>,所以原式
當(dāng)時(shí),因?yàn)辄c(diǎn)P在橢圓上,且不與點(diǎn)B重合,所以點(diǎn)P的坐標(biāo)為
則此時(shí),
則,所以
綜上所述:為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱(chēng)為類(lèi)工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱(chēng)為類(lèi)工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類(lèi)工人生產(chǎn)能力的莖葉圖(左圖),類(lèi)工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問(wèn)類(lèi)、類(lèi)工人各抽查了多少工人,并求出直方圖中的;
(2)求類(lèi)工人生產(chǎn)能力的中位數(shù),并估計(jì)類(lèi)工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過(guò)千分之一,則其生產(chǎn)部門(mén)當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái)) | 2 | 4 | 5 | 6 | 8 |
該產(chǎn)品的年利潤(rùn)(百萬(wàn)元) | 30 | 40 | 60 | 50 | 70 |
年返修臺(tái)數(shù)(臺(tái)) | 19 | 58 | 45 | 71 | 70 |
注:
(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門(mén)考核優(yōu)秀的概率.
(2)利用上表中五年的數(shù)據(jù)求出年利潤(rùn)(百萬(wàn)元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))的回歸直線(xiàn)方程是 ①.現(xiàn)該公司計(jì)劃從2019年開(kāi)始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬(wàn)臺(tái),且預(yù)計(jì)2019年可獲利32(百萬(wàn)元);但生產(chǎn)部門(mén)發(fā)現(xiàn),若用預(yù)計(jì)的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當(dāng)重新估算的,的值(精確到0.01),相對(duì)于①中,的值的誤差的絕對(duì)值都不超過(guò)時(shí),2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門(mén)希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬(wàn)臺(tái)?請(qǐng)說(shuō)明理由.
(參考公式:, ,,相對(duì)的誤差為.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,且曲線(xiàn)與恰有一個(gè)公共點(diǎn).
(Ⅰ)求曲線(xiàn)的極坐標(biāo)方程;
(Ⅱ)已知曲線(xiàn)上兩點(diǎn),滿(mǎn)足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為,且,點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(xiàn)與橢圓和圓分別相切于,兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,
(1)若點(diǎn)分別是線(xiàn)段的中點(diǎn),求證:平面平面;
(2)若二面角為直二面角,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿(mǎn)意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿(mǎn)意度”與“餐飲滿(mǎn)意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿(mǎn)意);2分(不滿(mǎn)意);3分(一般);4分(滿(mǎn)意);5分(很滿(mǎn)意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿(mǎn)意度為,餐飲滿(mǎn)意度為)
(1)求“住宿滿(mǎn)意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿(mǎn)意度”為3分時(shí)的5個(gè)“餐飲滿(mǎn)意度”人數(shù)的方差;
(3)為提高對(duì)酒店的滿(mǎn)意度,現(xiàn)從且的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿(mǎn)意度”為2的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com