10.在四棱錐A-BCDE中,底面BCDE為菱形,側面ABE為等邊三角形,且側面ABE⊥底面BCDE,O,F(xiàn)分別為BE,DE的中點,點P在AC上,且AP=$\frac{1}{3}$AC.
(Ⅰ)求證:平面ACE⊥平面AOF;
(Ⅱ)求證:BP∥平面AOF.

分析 (I)連結BD,由菱形性質得出CE⊥BD,又AO⊥平面BCDE,故AO⊥CE,由中位線性質得BD∥EF,故而CE⊥平面AOF,所以平面AOF⊥平面ACE;
(Ⅱ)設CE 與BD,OF 的交點分別為M,N,連結AN,PM.則當平面BPM∥平面AOF時,BP∥平面AOF.

解答 證明:(Ⅰ)連結BD,因為四邊形BCDE 為菱形,
所以CE⊥BD.
因為O,F(xiàn) 分別為BE,DE 的中點,
所以OF∥BD,所以CE⊥OF.
由(Ⅰ)可知,AO⊥平面BCDE.
因為CE?平面BCDE,所以AO⊥CE.
因為AO∩OF=O,所以CE⊥平面AOF.
又因為CE?平面ACE,
所以平面AOF⊥平面ACE.
(Ⅱ)設CE 與BD,OF 的交點分別為M,N,連結AN,PM.
因為四邊形BCDE 為菱形,O,F(xiàn) 分別為BE,DE 的中點,
所以$\frac{NM}{MC}$=$\frac{1}{2}$.
設P為AC上靠近A點的三等分點,
則$\frac{AP}{PC}$=$\frac{NM}{MC}$=$\frac{1}{2}$,所以PM∥AN.
因為AN?平面AOF,PM?平面AOF,所以PM∥平面AOF.
由于BD∥OF,OF?平面AOF,BD?平面AOF,
所以BD∥平面AOF,即BM∥平面AOF.
因為BM∩PM=M,
所以平面BMP∥平面AOF.
因為BP?平面BMP,所以BP∥平面AOF.

點評 本題考查了線面垂直,面面垂直的判定,線面平行的判定,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.在平面直角坐標系xoy中,直線y=2x+b是曲線y=2alnx的切線,則當a>0時,實數(shù)b的最小值是-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知正四面體A-BCD的棱長為1,且$\overrightarrow{AE}$=2$\overrightarrow{EB}$,$\overrightarrow{AF}$=2$\overrightarrow{FD}$,則$\overrightarrow{EF}$•$\overrightarrow{DC}$=( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知平面α∩平面β=m,直線l?α,則“l(fā)⊥m”是“l(fā)⊥β”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,D,M分別是AA1,BC的中點,∠CDC1=90°,在△ABC中,AB=2AC,∠BAC=60°.
(1)證明:AM∥平面BDC1;
(2)證明:DC1⊥平面BDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如果曲線2|x|-y-4=0與曲線x2+λy2=4(λ<0)恰好有兩個不同的公共點,則實數(shù)λ的取值范圍是[-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{e^x}{e}-lnx$.
(I)若f(x)在點(1,f(x))的切線l垂直于y軸,求切線l的方程;
(II)求f(x)的最小值;
(III)若關于x的不等式${e^{x-1}}+1-f(x)>\frac{{k({x-1})}}{x}$在(1,+∞)恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=2x3-3x2-12x+5.
(Ⅰ)求曲線y=f(x)在點x=1處的切線方程;
(Ⅱ)求函數(shù)y=f(x)在[0,3]的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知直線l:4x-3y+6=0,拋物線x=$\frac{1}{4}{y^2}$上一動點P到y(tǒng)軸和直線l的距離之和的最小值是1.

查看答案和解析>>

同步練習冊答案