分析 (1)取BC1的中點(diǎn)N,連接DN,MN,證明:四邊形ADNM為平行四邊形,可得DN∥AM,即可證明AM∥平面BDC1;
(2)證明:DC1⊥BC,DC1⊥DC,且DC∩BC=C,即可證明DC1⊥平面BDC.
解答 證明:(1)取BC1的中點(diǎn)N,連接DN,MN,
則$MN∥\frac{1}{2}C{C_1}$且$MN=\frac{1}{2}C{C_1}$.
又$AD∥\frac{1}{2}C{C_1}$且$AD=\frac{1}{2}C{C_1}$,
∴AD∥MN,且AD=MN,
∴四邊形ADNM為平行四邊形,
∴DN∥AM.
又DN?平面BDC1,AM?平面BDC1,
∴AM∥平面BDC1.
(2)由題設(shè)AC=1,則AB=2,
由余弦定理,得$BC=\sqrt{3}$.
由勾股定理,得∠ACB=90°,BC⊥AC1.
又∵BC⊥CC1,且CC1∩AC=C,
∴BC⊥平面ACC1A1.
又DC1?平面ACC1A1,∴DC1⊥BC.
又DC1⊥DC,且DC∩BC=C,
∴DC1⊥平面BDC.
點(diǎn)評(píng) 本小題主要考查空間線面關(guān)系等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}+\frac{1}{2}i$ | B. | $\frac{1}{2}+i$ | C. | $\frac{1}{4}-\frac{1}{2}i$ | D. | $\frac{1}{2}-i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4,5} | B. | {1,2,4,5} | C. | {2,5} | D. | {0,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 12 | C. | 15 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com