分析 (1)由函數(shù)f(x)=x2+bx為偶函數(shù),可得b=0,可得an+1-1=2(an−1)2,取對數(shù):log2(an+1-1)=2log2(an-1)+1,可得:bn+1+1=2(bn+1),利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)由(1)得cn=nbn=n×3×2n-1-n.利用“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的求和公式即可得出.
解答 解:(1)∵函數(shù)f(x)=x2+bx為偶函數(shù),∴b=0,
∴an+1=2f(an-1)+1=2(an−1)2+1,
∴an+1-1=2(an−1)2,
∴l(xiāng)og2(an+1-1)=2log2(an-1)+1,
∴bn+1=2bn+1,變形為:bn+1+1=2(bn+1),
b1+1=log2(a1-1)=2+1=3,
∴數(shù)列{bn+1}是首項(xiàng)為3,公比為2的等比數(shù)列,
∴bn+1=3×2n-1,解得:bn=3×2n-1-1.
(2)由(1)得cn=nbn=n×3×2n-1-n.
∴數(shù)列{cn}的前n項(xiàng)和Sn=3[1+2×2+3×22+…+n×2n-1]-n(n+1)2.
設(shè)Tn=1+2×2+3×22+…+n×2n-1,
則2Tn=2+2×22+…+(n-1)×2n-1+n×2n,
∴-Tn=1+2+22+…+2n-1-n×2n=2n−12−1-n×2n,
∴Tn=(n-1)×2n+1.
∴Sn=3(n-1)×2n+3-n(n+1)2.
點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、“錯(cuò)位相減法”、遞推公式、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 65 | C. | 35 | D. | 310 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | -2 | 4 | √2 |
y | -2√3 | 0 | -4 | √22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若α=β,則tanα=tanβ”的逆否命題為假命題 | |
B. | “x>1”是“x2-1>0”的必要不充分條件 | |
C. | “m>0>n”是“\frac{1}{m}>\frac{1}{|n|}”的充分不必要條件 | |
D. | 命題“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<-1 | B. | -1<a<0 | C. | -1<a≤-\frac{1}{2} | D. | -1<a≤-\frac{2}{3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com