分析 確定f(x)與g(x)的圖象交點的橫坐標的范圍,作出函數h(x)的圖象,即可得到結論.
解答 解:記f(x)與g(x)的圖象交點的橫坐標為x=x0,
∴f($\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$<1=log${\;}_{\frac{1}{2}}$$\frac{1}{2}$=g($\frac{1}{2}$),
∴x0∈($\frac{1}{2}$,1).
由于f(x)與g(x)均為減函數,
∴h(x)為減函數,
∵h(x)≥$\frac{1}{2}$,
∴$\frac{1}{2}$x≥$\frac{1}{2}$=($\frac{1}{2}$)1,
∴x<1,
∵log${\;}_{\frac{1}{2}}$x≥$\frac{1}{2}$=$\frac{1}{2}$log${\;}_{\frac{1}{2}}$$\frac{1}{2}$=log${\;}_{\frac{1}{2}}$$\frac{\sqrt{2}}{2}$,
∴0<x≤$\frac{\sqrt{2}}{2}$,
綜上所述不等式的解集為(0,$\frac{\sqrt{2}}{2}$],
故答案為:(0,$\frac{\sqrt{2}}{2}$]
點評 本題考查新定義,考查不等式的解法,考查數形結合的數學思想,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 若$\lim_{n→∞}a_n^2={A^2}$,則$\underset{lim}{n→∞}$an=A | B. | 若an>0,$\lim_{n→∞}{a_n}=A$,則A>0 | ||
C. | 若$\lim_{n→∞}{a_n}=A$,則$\lim_{n→∞}a_n^2={A^2}$ | D. | 若$\underset{lim}{n→∞}$an=A,則$\lim_{n→∞}na_n^{\;}=n{A^{\;}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com