過點(-2,4),且方向向量
d
=(2,4)的直線點方向式方程為
 
考點:直線的點斜式方程
專題:平面向量及應(yīng)用
分析:方向向量
d
=(2,4)可得出正弦的斜率為
4
2
.即可得到直線點方向式方程.
解答: 解:由題意可得直線點方向式方程為:
y-4
4
=
x+2
2

故答案為:
y-4
4
=
x+2
2
點評:本題考查了直線點方向式方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b(a,b∈R),g(x)=x2+c(c<0)
(1)請用f(0)和f(1)表示出a,b
(2)若對任意的x∈[0,1],都有0≤f(x)≤1,求ab的最大值
(3)已知a=1,b和c是閉區(qū)間l的兩個端點,若對任意的x∈l,都有f(x)g(x)≥0,求|b-c|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
25
+
y2
9
=1的焦距是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=acosx+b(a、b為常數(shù))的最大值是1,最小值是-7,那么acosx+bsinx的最大值是( 。
A、1B、4C、5D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對于x>0有意義,且滿足f(2)=1,f(xy)=f(x)+f(y),求f(1)與f(8)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={1,m,m2-3m-3},若3∈P且-1∉P,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是命題p:函數(shù)f(x)=(a-
3
2
x是R上的減函數(shù),命題q:f(x)=x2-3x+3在[0,a]上的值域為[1,3],若“p或q”為真命題,“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x1,x2,…,x2010,x2011的方差為3,則3(x1-2),3(x2-2),…,3(x2010-2),3(x2011-2)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對口扶貧活動中,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以優(yōu)惠價格轉(zhuǎn)讓給小型殘疾人企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3600元后,逐步償還轉(zhuǎn)讓費(不計息).根據(jù)甲提供的資料有:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2000元.
(1)寫出月銷售量Q(百件)與銷售價格P(元)的函數(shù)關(guān)系;
(2)寫出月利潤扣除職工最低生活費的余額L(元)與銷售價格P(元)的函數(shù)關(guān)系;
(3)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額L最大?并求最大余額.

查看答案和解析>>

同步練習(xí)冊答案