13.函數(shù)y=loga(x+2)-1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A.若直線mx+ny+2=0經(jīng)過(guò)點(diǎn)A,則m•n的最大值為1.

分析 由條件求得 A(-2,-1),再根據(jù)點(diǎn)A在直線mx+ny+1=0上求得2m+n=1,利用基本不等式求得mn的最大值.

解答 解:∵函數(shù)y=loga(x+2)-1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)A,
∴A(-1,-1).
再由點(diǎn)A在直線mx+ny+2=0上,
可得-m-n+2=0,即 m+n=2.
再由基本不等式可得 m+n=2≥2$\sqrt{mn}$,故有mn≤1,
當(dāng)且僅當(dāng)m=n=1時(shí),等號(hào)成立,
故mn的最大值為1,
故答案為:1

點(diǎn)評(píng) 本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-a|,同時(shí)滿足f(-2)≤4和f(2)≤4.
(1)求實(shí)數(shù)a的值;
(2)記函數(shù)f(x)的最小值為M,若$\frac{1}{m}$+$\frac{2}{n}$=M(m,n∈R*),求m+2n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在極坐標(biāo)系中,圓ρ=$\sqrt{3}$cosθ-sinθ(0≤θ<2π)的圓心的極坐標(biāo)是(  )
A.$({1,\frac{π}{6}})$B.$({1,\frac{5π}{6}})$C.$({1,\frac{7π}{6}})$D.$({1,\frac{11π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A,B的極坐標(biāo)分別為A(2,π),B(2,$\frac{π}{3}$).
(1)求直線AB的極坐標(biāo)方程;
(2)設(shè)M為曲線C上的點(diǎn),求點(diǎn)M到直線AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.傾斜角為45o的直線l經(jīng)過(guò)y2=4x的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn),則線段|AB|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某中學(xué)三個(gè)年級(jí)共有24個(gè)班,學(xué)校為了了解同學(xué)們的心理狀況,將每班編號(hào),依次為1到24,現(xiàn)用系統(tǒng)抽樣的方法,抽取4個(gè)班級(jí)進(jìn)行調(diào)查,若抽到的編號(hào)之和為48,則抽到的第二個(gè)編號(hào)為( 。
A.3B.9C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若曲線f(x)=f′(2)lnx-f(1)x+2x2在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線為l,則切線l的斜率為29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=xln(x+1)+1.
(1)求y=f(x)在點(diǎn)(0,f(0))處的切線;
(2)已知函數(shù)g(x)=f(x)-$\frac{{x}^{3}}{3}$+$\frac{{x}^{2}}{2}$-1,判斷函數(shù)y=g(x)在區(qū)間(-1,1)內(nèi)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知i為虛數(shù)單位,$\overline{z}$是z的共軛復(fù)數(shù),若($\overline{z}$+i)(1-i)=1+3i,則|z|=( 。
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案