精英家教網 > 高中數學 > 題目詳情
10.已知數列{an}是等差數列,且滿足:a1+a2+a3=6,a5=5;數列{bn}滿足:bn-bn-1=${2^{{a_{n-1}}}}$(n≥2,n∈N*),b1=2.
(Ⅰ)求an和bn;
(Ⅱ)記數列cn=anbn(n∈N*),若{cn}的前n項和為Tn,求Tn

分析 (Ⅰ)a1+a2+a3=6,a5=5,可得$\left\{\begin{array}{l}3{a_1}+3d=6\\{a_1}+4d=5\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=1\\ d=1\end{array}\right.$,即可得出an;又${b_n}-{b_{n-1}}={2^{{a_{n-1}}}}={2^{n-1}}$,利用累加求和方法即可得出bn
(Ⅱ)cn=an•bn=n•2n,利用錯位相減法即可得出.

解答 解:(Ⅰ)∵a1+a2+a3=6,a5=5,
∴$\left\{\begin{array}{l}3{a_1}+3d=6\\{a_1}+4d=5\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=1\\ d=1\end{array}\right.$,…(2分)
∴an=n;…(3分)
又${b_n}-{b_{n-1}}={2^{{a_{n-1}}}}={2^{n-1}}$,
∴當n≥2時,bn=(bn-bn-1)+(bn-1-bn-2)+(bn-2-bn-3)+…+(b3-b2)+(b2-b1)+b1
∴${b_n}={2^n}$,…(4分)
又b1=2適合上式,∴${b_n}={2^n}$.…(6分)
(Ⅱ)∵cn=an•bn=n•2n,
∴Tn=2+2×22+3×23+…+n•2n,
2Tn=22+2×23+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1,
∴Tn=(n-1)•2n+1+2.

點評 本題考查等差數列與等比數列的通項公式與求和公式、累加求和方法、錯位相減法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.在直角坐標系xOy中,點P到兩點(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距離之和等于4.
(1)求點P的軌跡方程;
(2)設點P的軌跡為C,直線y=kx+1與C交于A,B兩點,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知f1(x)=cosx,f2(x)=coswx(w>0),f2(x)的圖象可以看作是把f1(x)圖象中的點的橫坐標縮為原來的$\frac{1}{3}$(縱坐標不變)而得到的,則w=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知a∈R,函數f(x)=2x3-3(a+1)x2+6ax.
(1)若a=4,求y=f(x)的單調區(qū)間;
(2)若函數f(x)在x=3處取得極值,求曲線y=f(x)在點(0,f(0))處的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.喜羊羊家族的四位成員與灰太狼、紅太狼進行談判,通過談判他們握手言和,準備一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成員必須相鄰,有多少種排法?
(2)要求灰太狼、紅太狼不相鄰,有多少種排法?
(3)記灰太狼和紅太狼之間的喜羊羊家族的成員個數為ξ,求ξ的概率分布.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知a,b∈R,i2=-1,則“a=b=1”是“(a+bi)2=2i”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.學校在10名男教師和5名女教師中隨機選取2名教師到西部支教,所選2名教師恰為1名男教師和1名女教師的概率為( 。
A.1B.$\frac{11}{21}$C.$\frac{10}{21}$D.$\frac{5}{21}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知點P在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,以P為圓心的圓與x軸相切于橢圓的右焦點F2,且$\overrightarrow{OP}$•$\overrightarrow{O{F}_{2}}$=2,tan∠OPF2=$\sqrt{2}$,其中O為坐標原點.
(1)求橢圓C的方程;
(2)已知點M(-1,0),設Q是橢圓C上的一點,過Q、M兩點的直線l交y軸于點N,若$\overrightarrow{NQ}$=2$\overrightarrow{QM}$,求直線l的方程;
(3)作直線l1與橢圓D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1交于不同的兩點S,T,其中S點的坐標為(-2,0),若點G(0,t)是線段ST垂直平分線上一點,且滿足$\overrightarrow{GS}$•$\overrightarrow{GT}$=4,求實數t的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.若隨機變量ξ的分布列如表所示,則p1等于(  )
ξ-124
P$\frac{1}{5}$$\frac{2}{3}$p1
A.0B.$\frac{2}{15}$C.$\frac{1}{15}$D.1

查看答案和解析>>

同步練習冊答案