20.設(shè)a∈R,若復(fù)數(shù)z=$\frac{a-i}{3+i}$(i是虛數(shù)單位)的實部為$\frac{1}{2}$,則a的值為(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.-2D.2

分析 利用復(fù)數(shù)的運算法則、實部的定義即可得出.

解答 解:a∈R,復(fù)數(shù)z=$\frac{a-i}{3+i}$=$\frac{(a-i)(3-i)}{(3+i)(3-i)}$=$\frac{3a-1}{10}$+$\frac{-3-a}{10}$i的實部為$\frac{1}{2}$,
∴$\frac{3a-1}{10}$=$\frac{1}{2}$,解得a=2.
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、實部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.以下四個命題:
①已知隨機變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為$\frac{1+a}{2}$;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2a-b>1”的充分不必要條件;
③函數(shù)f(x)=${x}^{\frac{1}{2}}$-($\frac{1}{2}$)x的零點個數(shù)為1;
④命題p:?n∈N,3n≥n2+1,則¬p為?n∈N,3n≤n2+1.
其中真命題的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}$(e是自然對數(shù)的底數(shù)),f(x)的圖象在x=-$\frac{1}{2}$處的切線方程為y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值;
(2)探究直線y=$\frac{3}{4}x+\frac{9}{8}$.是否可以與函數(shù)g(x)的圖象相切?若可以,寫出切點的坐標(biāo),否則,說明理由;
(3)證明:當(dāng)x∈(-∞,2]時,f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“對稱數(shù)”是指從左到右讀與從右到左讀都一樣的正整數(shù),如121,666,54345等,則在所有的六位數(shù)中,不同的“對稱數(shù)”的個數(shù)是(  )
A.100B.900C.999D.1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算定積分:
(1)${∫}_{1}^{2}$$\frac{1}{x}$dx
(2)${∫}_{0}^{\frac{π}{6}}$4cosxdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義域為R的函數(shù)f(x)滿足f(x+2)=$\sqrt{3}$f(x),x∈[0,2)時,f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,x∈[0,1)}\\{-2•(\frac{1}{3})^{|x-\frac{4}{3}|},x∈[1,2)}\end{array}\right.$,x
∈[-4,-2)時,f(x)≥t2-$\frac{7}{3}$t恒成立,則實數(shù)t的取值范圍是( 。
A.[$\frac{1}{2}$,3)B.(-∞,$\frac{1}{2}$]∪(3,+∞)C.[$\frac{1}{3}$,2]D.(-∞,$\frac{1}{3}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)不等式$\left\{\begin{array}{l}{y>1}\\{2x-y≥0}\end{array}\right.$,表示的平面區(qū)域為D.若曲線y=ax2+1上存在無數(shù)個點在D內(nèi),則實數(shù)a的取值范圍是( 。
A.(0,2)B.(1,+∞)C.(0,1)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.2017年2月為確保食品安全,鞍山市質(zhì)檢部門檢查1000袋方便面的質(zhì)量,抽查總量的2%,在這個問題中,下列說法正確的是( 。
A.總體是指這箱1000袋方便面B.個體是一袋方便面
C.樣本是按2%抽取的20袋方便面D.樣本容量為20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上任意一點M與左右頂點A1、A2連線的斜率之積為$\frac{3}{4}$,則雙曲線的離心率為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{5}{4}$C.$\frac{\sqrt{7}}{2}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊答案