15.計(jì)算定積分:
(1)${∫}_{1}^{2}$$\frac{1}{x}$dx
(2)${∫}_{0}^{\frac{π}{6}}$4cosxdx.

分析 利用微積分基本定理,分別求出被積函數(shù)的原函數(shù),代入積分上限和下限求值.

解答 解:(1)${∫}_{1}^{2}$$\frac{1}{x}$dx=lnx|${\;}_{1}^{2}$=ln2-ln1=ln2;
(2)${∫}_{0}^{\frac{π}{6}}$4cosxdx=4sinx|${\;}_{0}^{\frac{π}{6}}$=4sin$\frac{π}{6}$=2.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算;熟練掌握微積分基本定理是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=$\frac{_{1}}{3+1}$+$\frac{_{2}}{{3}^{2}+1}$+$\frac{_{3}}{{3}^{3}+1}$+…+$\frac{_{n}}{{3}^{n}+1}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)令cn=$\frac{{a}_{n}_{n}}{4}$(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)$A(\sqrt{3},0)$,點(diǎn)P是圓${(x+\sqrt{3})^2}+{y^2}=16$上的任意一點(diǎn),設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點(diǎn)E.
(1)求點(diǎn)E的軌跡方程;
(2)已知M,N兩點(diǎn)的坐標(biāo)分別為(-2,0),(2,0),點(diǎn)T是直線x=4上的一個(gè)動(dòng)點(diǎn),且直線TM,TN分別交(1)中點(diǎn)E的軌跡于C,D兩點(diǎn)(M,N,C,D四點(diǎn)互不相同),證明:直線CD恒過(guò)一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足iz=1+2i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x3-3x2,若過(guò)點(diǎn)(2,n)可作三條直線與曲線y=f(x)相切,則實(shí)數(shù)n的取值范圍是( 。
A.(-5,-4)B.(-5,0)C.(-4,0)D.(-5,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a∈R,若復(fù)數(shù)z=$\frac{a-i}{3+i}$(i是虛數(shù)單位)的實(shí)部為$\frac{1}{2}$,則a的值為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知a,b∈R,a>b,若2a2-ab-b2-4=0,則2a-b的最小值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.直線ax+by+1=0與圓x2+y2=1相切,則a+b+ab的最大值為(  )
A.1B.-1C.$\sqrt{2}$+$\frac{1}{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿足z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,則復(fù)數(shù)z的虛部等于( 。
A.-$\frac{\sqrt{2}}{3}$B.$\sqrt{2}$C.2D.-$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案