3.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.32B.16C.$\frac{32}{3}$D.$\frac{16}{3}$

分析 根據(jù)三視圖得該幾何體是放倒的四棱錐,由三視圖求出幾何元素的長(zhǎng)度、判斷出線面的位置關(guān)系,由錐體的體積公式求出該幾何體的體積.

解答 解根據(jù)三視圖得:該幾何體是放倒的四棱錐,
直觀圖如圖所示:E是棱CD的中點(diǎn),
且PE⊥平面ABCD,PE=2,
四棱錐的底面是邊長(zhǎng)為4、2的矩形,高為PE,
所以該幾何體的體積V=$\frac{1}{3}×4×2×2$
=$\frac{16}{3}$,
故選:D.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知集合M={(x,y)||x|≤2,|y|≤1},在集合M內(nèi)隨機(jī)取出一個(gè)元素(x,y).
(1)求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=1內(nèi)的概率.
(2)若x,y都是整數(shù),求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=1內(nèi)或該圓上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)是定義域?yàn)镽的奇函數(shù),且在(0,+∞)內(nèi)有1003個(gè)零點(diǎn),則f(x)的零點(diǎn)的個(gè)數(shù)為2007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F.
(Ⅰ)求證:A1C⊥平面BED;
(Ⅱ)求A1B與平面BDE所成角的正弦值;
(Ⅲ)求二面角D-BE-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,棱長(zhǎng)為a的正方體,N是棱A1D1的中點(diǎn);
(I)求直線AN與平面BB1D1D所成角的大;
(Ⅱ)求B1到平面ANC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在如圖所示的幾何體中,△ABC為正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F(xiàn)在線段BE上.
(1)求證:平面DBE⊥平面ABE;
(2)若二面角B-DA-F的余弦值為$\frac{\sqrt{10}}{4}$,求BF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為l,粗實(shí)線畫出的是某幾何體的三視圖,則這個(gè)幾何體的體積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示,在矩形ABCD中,AB=2a,AD=a,圖中陰影部分是以AB為直徑的半圓,現(xiàn)在向矩形ABCD內(nèi)隨機(jī)撒4000粒豆子(豆子的大小忽略不計(jì)),根據(jù)你所學(xué)的概率統(tǒng)計(jì)知識(shí),下列四個(gè)選項(xiàng)中最有可能落在陰影部分內(nèi)的豆子數(shù)目是(  )
A.1000πB.2000πC.3000πD.400π

查看答案和解析>>

同步練習(xí)冊(cè)答案