如圖,在中,是的中點,是的中點,的延長線交于.
(Ⅰ)求的值;
(Ⅱ)若面積為,四邊形的面積為,求:的值.
(Ⅰ);(Ⅱ)1:5
解析試題分析:(I)過D作GD//BF,并交AF于G點,則易知BF=GD,所以本題轉化為求DG:FC的值.
(II)本題可轉化為求,然后△BEF以BF為底,△BDC以BC為底,則由(1)知BF:BC=1:3,又由BE:BD=1:2可知:=1:2,問題到此基本得以解決.
試題解析:(Ⅰ)過D點作DG∥BC,并交AF于G點,
∵E是BD的中點,∴BE=DE,
又∵∠EBF=∠EDG,∠BEF=∠DEG,
∴△BEF≌△DEG,則BF=DG,
∴BF:FC=DG:FC,
又∵D是AC的中點,則DG:FC=1:2,
則BF:FC=1:2;即(4分)
(Ⅱ)若△BEF以BF為底,△BDC以BC為底,則由(1)知BF:BC=1:3,
又由BE:BD=1:2可知1:2,其中、分別為△BEF和△BDC的高,
則,則=1:5.(10分)
考點:平行線分線段成比例定理
科目:高中數(shù)學 來源: 題型:解答題
如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.求證:
(1)∠AED=∠AFD;
(2)AB2=BE·BD-AE·AC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=ACAE=AB,BD,CE相交于點F.
(Ⅰ)求證:A,E,F, D四點共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com