19.已知公差不為零的等差數(shù)列{an}滿足:a1=3,且a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=$\frac{1}{{{a}_{n-1}}_{{a}_{n}}}$,求數(shù)列{bn}的前n項(xiàng)和{Tn}.

分析 (Ⅰ)設(shè)數(shù)列{an}的公差為d(d≠0),由題可知${a_1}•{a_{13}}=a_4^2$,的3(3+12d)=(3+3d)2,d=2,即可求得通項(xiàng)公式.
(Ⅱ)${b_n}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$累加即可求得Tn

解答 解:(Ⅰ)設(shè)數(shù)列{an}的公差為d(d≠0),由題可知${a_1}•{a_{13}}=a_4^2$,
即3(3+12d)=(3+3d)2,解得d=2,
則an=3+(n-1)×2=2n+1.
(Ⅱ)解:因?yàn)?{b_n}=\frac{1}{{{a_{n-1}}{a_n}}}$,所以${b_n}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$…(8分)
=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$…(9分)
則Tn=b1+b2+b3+…bn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$…(10分)
=$\frac{n}{2n+1}$…(12分)

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng),裂項(xiàng)求和,屬于中檔題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=x2-3x+lnx,則f(x)在區(qū)間[$\frac{1}{2}$,2]上的最小值為-2;當(dāng)f(x)取到最小值時(shí),x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且${S_n}=-2{n^2}+15n$,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)n為何值時(shí),Sn取得最大值并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7..已知函數(shù)$f(x)=\frac{1}{x}+lnx$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)試證明:${({1+\frac{1}{n}})^{n+1}}>e$(e=2.718…,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
(1)求證:C′E∥面AB′D′;
(2)求面AB'D'與面ABD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\vec m=({1,cosθ}),\vec n=({sinθ,-2})$,且$\vec m⊥\vec n$,則sin2θ+6cos2θ的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知橢圓E的中心為坐標(biāo)原點(diǎn),離心率為$\frac{{\sqrt{3}}}{2}$,E的右焦點(diǎn)與拋物線C:y2=12x的焦點(diǎn)重合,A,B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知等差數(shù)列{an}滿足a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)d>0時(shí),設(shè)${b_n}=\frac{{{a_n}+4}}{2^n}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知二項(xiàng)式${({x-\frac{1}{x}})^6}$,則它的展開(kāi)式中的常數(shù)項(xiàng)為-20.

查看答案和解析>>

同步練習(xí)冊(cè)答案