11.已知橢圓E的中心為坐標(biāo)原點,離心率為$\frac{{\sqrt{3}}}{2}$,E的右焦點與拋物線C:y2=12x的焦點重合,A,B是C的準(zhǔn)線與E的兩個交點,則|AB|=$\sqrt{3}$.

分析 利用橢圓的離心率以及拋物線的焦點坐標(biāo),求出橢圓的半長軸,然后求解拋物線的準(zhǔn)線方程,求出A,B坐標(biāo),即可求解所求結(jié)果.

解答 解:橢圓E的中心在坐標(biāo)原點,離心率為$\frac{\sqrt{3}}{2}$,
E的右焦點(c,0)與拋物線C:y2=12x的焦點(3,0)重合,
可得c=3,a=2$\sqrt{3}$,b2=3,橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1,
拋物線的準(zhǔn)線方程為:x=-3,
代入橢圓方程,解得y=±$\frac{\sqrt{3}}{2}$,
所以A(-3,$\frac{\sqrt{3}}{2}$),B(-3,-$\frac{\sqrt{3}}{2}$).
∴|AB|=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查拋物線以及橢圓的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知i是虛數(shù)單位,且(1+2i)$\overline{z}$=3+i.
(1)求z;
(2)若z是關(guān)于x的方程x2+px+q=0的一個根,求實數(shù)p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)若不等式|x-m|<1成立的充分不必要條件為$\frac{1}{3}$<x<$\frac{1}{2}$,求實數(shù)m的取值范圍.
(2)已知a,b是正數(shù),且a+b=1,求證:(ax+by)(bx+ay)≥xy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知公差不為零的等差數(shù)列{an}滿足:a1=3,且a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列bn=$\frac{1}{{{a}_{n-1}}_{{a}_{n}}}$,求數(shù)列{bn}的前n項和{Tn}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“λ<1”是“數(shù)列an=n2-2λn為遞增數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,將圓O:x2+y2=4上每一個點的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$,得到曲線C.
(1)求曲線C的參數(shù)方程;
(2)以坐標(biāo)原點O為極點,以x軸非負(fù)半軸為極軸建立極坐標(biāo)系,在兩坐標(biāo)系中取相同的單位長度,射線θ=α(ρ≥0)與圓O和曲線C分別交于點A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xoy中,已知點P(2,1)在橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)不經(jīng)過坐標(biāo)原點O的直線l與橢圓C交于A,B兩點(不與點P重合),且線段AB的中為D,直線OD的斜率為1,記直線PA,PB的斜率分別為k1,k2,求證:k1•k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列有關(guān)命題的說法中,正確的是( 。
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”
B.命題“若α>β,則sinα>sinβ”的逆否命題為真命題
C.命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0”
D.“x2+x-2>0”的一個充分不必要條件是“x>1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}&{\;}\\{y≥1}&{\;}\\{x+y≤5}&{\;}\end{array}\right.$時,z=$\frac{x}{a}$+$\frac{y}$(a≥b>0)的最大值為1,則a+b的最小值為( 。
A.2B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案