A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | $\frac{5}{2}$ |
分析 畫出滿足條件的可行域,求出各個角點的坐標,代和目標函數(shù)比較大小后,可得目標函數(shù)z=y-2x的最大值.
解答 解:滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ 4x-y+1≥0\end{array}\right.$的可行域如下圖所示:
由$\left\{\begin{array}{l}2x+y-4=0\\ 4x-y+1=0\end{array}\right.$得:$\left\{\begin{array}{l}x=\frac{1}{2}\\ y=3\end{array}\right.$,
當x=0,y=1時,目標函數(shù)z=y-2x=1;
當x=2,y=0時,目標函數(shù)z=y-2x=-4;
當x=$\frac{1}{2}$,y=3時,目標函數(shù)z=y-2x=2;
故目標函數(shù)z=y-2x的最大值是2,
故選:B
點評 本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點、定出最優(yōu)解
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩兩相交的三條直線可確定一個平面 | |
B. | 兩個平面與第三個平面所成的角都相等,則這兩個平面一定平行 | |
C. | 過平面外一點的直線與這個平面只能相交或平行 | |
D. | 和兩條異面直線都相交的兩條直線一定是異面直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 39 | B. | 45 | C. | 50 | D. | 55 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -5或3 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2] | B. | (0,2) | C. | [-1,2] | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com