精英家教網 > 高中數學 > 題目詳情

【題目】某地出現了蟲害,農業(yè)科學家引入了蟲害指數數列,表示第周的蟲害的嚴重程度,蟲害指數越大,嚴重程度越高,為了治理蟲害,需要環(huán)境整治、殺滅害蟲,然而由于人力資源有限,每周只能采取以下兩個策略之一:

策略:環(huán)境整治,蟲害指數數列滿足;

策略:殺滅害蟲,蟲害指數數列滿足;

當某周蟲害指數小于1時,危機就在這周解除.

1)設第一周的蟲害指數,用哪一個策略將使第二周的蟲害嚴重程度更。

2)設第一周的蟲害指數,如果每周都采用最優(yōu)的策略,蟲害的危機最快在第幾周解除?

【答案】1)答案不唯一,具體見解析(2)蟲害最快在第9周解除

【解析】

1)根據兩種策略,分別計算第二周蟲害指數,比較它們的大小可得結論;

(2)由(1)可知,最優(yōu)策略為策略,得,湊配出數列是等比數列,求得通項,由可解得的最小值.

1)由題意可知,使用策略時,;使用策略時,

,即當時,使用策略第二周嚴重程度更;當時,使用兩種策哈第二周嚴重程度一樣;當時,使用策略第二周嚴重程度更小.

2)由(1)可知,最優(yōu)策略為策略,即,所以數列是以為首項,1.08為公比的等比數列,所以,即,令,可得,所以蟲害最快在第9周解除.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,點分別是棱上的點滿足

(Ⅰ)證明:

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某數學教師在甲、乙兩個平行班采用“傳統(tǒng)教學”和“高效課堂”兩種不同的教學模式進行教學實驗.為了解教改實效,期中考試后,分別從兩個班中各隨機抽取名學生的數學成績進行統(tǒng)計,得到如下的莖葉圖:

(Ⅰ)求甲、乙兩班抽取的分數的中位數,并估計甲、乙兩班數學的平均水平和分散程度(不要求計算出具體值,給出結論即可);

(Ⅱ)若規(guī)定分數在的為良好,現已從甲、乙兩班成績?yōu)榱己玫耐瑢W中,用分層抽樣法抽出位同學進行問卷調查,求這位同學中恰含甲、乙兩班所有分以上的同學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足,.記,設數列的前項和為,求證:當時.

(Ⅰ);

(Ⅱ);

(Ⅲ)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求曲線的極坐標方程與曲線的直角坐標方程;

2)設、為曲線上位于第一,二象限的兩個動點,且,射線,交曲線分別于點,.面積的最小值,并求此時四邊形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某快遞公司招聘快遞騎手,該公司提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞騎手每完成一單業(yè)務提成3元:方案(2)規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快遞公司記錄了每天騎手的人均業(yè)務量.現隨機抽取100天的數據,將樣本數據分為七組,整理得到如圖所示的頻率分布直方圖.

(Ⅰ)隨機選取一天,估計這一天該快遞公司的騎手的人均日快遞業(yè)務量不少于65單的概率;

(Ⅱ)若騎手甲、乙、丙選擇了日工資方案(1),丁、戊選擇了日工資方案(2).現從上述5名騎手中隨機選取2人,求至少有1名騎手選擇方案(2)的概率;

(Ⅲ)若僅從人均日收入的角度考慮,請你利用所學的統(tǒng)計學知識為新聘騎手做出日工資方案的選擇,并說明理由(同組中的每個數據用該組區(qū)間的中點值代替)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征和嚴重急性呼吸綜合征等較嚴重疾病. 而今年出現的新型冠狀病毒是以前從未在人體中發(fā)現的冠狀病毒新毒株. 人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等. 在較嚴重病例中感染可導致肺獎、嚴重急性呼吸綜合征、賢衰竭,甚至死亡.核酸檢測是診斷新冠肺炎的重要依據,首先取病人的唾液或咽拭子的樣本,再提取唾液或咽拭子樣本里的遺傳物質,如果有病毒,樣本檢測會呈現陽性,否則為陰性. 根據統(tǒng)計發(fā)現,疑似病例核酸檢測呈陽性的概率為,現有例疑似病例,分別對其取樣、檢測,多個樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗,混合樣本中只要有病毒,則混合樣本化驗結果就會呈陽性,若混合樣本呈陽性,則將該組中各個樣本再逐個化驗;若混合樣本呈陰性,則該組各個樣本均為陰性.現有以下三種方案:

方案一:逐個化驗;

方案二:四個樣本混在一起化驗;

方案三: 平均分成兩組化驗.

在新冠肺炎爆發(fā)初期,由于檢查能力不足,化檢次數的期望值越小,則方案越“優(yōu)”.

1)若,求個疑似病例樣本混合化驗結果為陽性的概率;

2)若,現將該例疑似病例樣本進行化驗,請問:方案一、二、 三中哪個最“優(yōu)”?

3)若對例疑似病例樣本進行化驗,且“方案二”比“方案一”更“優(yōu)”,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年末,武漢出現新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個小組,排查工作期間社區(qū)隨機抽取了100戶已排查戶,進行了對排查工作態(tài)度是否滿意的電話調查,根據調查結果統(tǒng)計后,得到如下的列聯表.

是否滿意

組別

不滿意

滿意

合計

16

34

50

2

45

50

合計

21

79

100

1)分別估計社區(qū)居民對組、組兩個排查組的工作態(tài)度滿意的概率;

2)根據列聯表的數據,能否有的把握認為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關?

附表:

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠制作如圖所示的一種標識,在半徑為R的圓內做一個關于圓心對稱的H圖形,H型圖形由兩豎一橫三個等寬的矩形組成,兩個豎直的矩形全等且它們的長邊是橫向矩形長邊的倍,設O為圓心,,H型圖形的面積為S.

1)將ABADR、表示,并將S表示成的函數;

2)為了突出H型圖形,設計時應使S盡可能大,則當為何值時,S最大?并求出S的最大值.

查看答案和解析>>

同步練習冊答案