精英家教網 > 高中數學 > 題目詳情
6.下列不等式中,正確的是( 。
A.若x∈R,則$x+\frac{4}{x}≥4$B.若x∈R,則${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,則${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b為正實數,則$\frac{{\sqrt{a}+\sqrt}}{2}≥\sqrt{ab}$

分析 利用基本不等式的使用法則“一正二定三相等”即可判斷出正誤.

解答 解:x<0,時,A不成立;B的等號不成立;
D.利用基本不等式的性質可得:$\frac{\sqrt{a}+\sqrt}{2}$≥$\root{4}{ab}$,因此不成立.
C.利用基本不等式的性質可得:${x^2}+1+\frac{1}{{{x^2}+1}}≥2$,當且僅當x=0時取等號.
故選:C.

點評 本題考查了基本不等式的使用法則“一正二定三相等”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.200件產品有5件次品,先從中任意抽去5間,其中至少有2件次品的抽法有(  )
A.A${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$種
B.C${\;}_{3}^{2}$C${\;}_{198}^{3}$種
C.C${\;}_{200}^{5}$-C${\;}_{197}^{5}$種
D.C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$種

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知函數f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求f(x)的定義域.
(2)若f(a)=2,求a的值;
(3)求證:f($\frac{1}{x}$)=-f(x)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知α,β是兩個不重合的平面,m,n 是兩條不重合的直線.下列命題中不正確的是( 。
A.若 m∥n,m⊥α,則 n⊥αB.若 m⊥α,m⊥β,則α⊥β
C.若 m⊥α,m⊥β,則α∥βD.若 m∥α,m?β,α∩β=n,則 m∥n

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知正四棱臺的上、下底面面積分別為4、16,一側面面積為12,分別求該棱臺的斜高、高、側棱長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.某企業(yè)共有3 200名職工,其中青、中、老年職工的比例為3:5:2.若從所有職工中抽取一個容量為400的樣本,則采用哪種抽樣方法更合理?青、中、老年職工應分別抽取多少人?每人被抽取的可能性相同嗎?

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.已知函數f(x)=|x-1|-2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R,$\frac{{a}^{2}{+c}^{2}}{2}$+b2=k,求b(a+c)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知二次函數f(x)滿足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)當x∈[-2,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數據如下:
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(1)求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試預測加工10個零件需要多少小時?
(3)此回歸方程擬合效果如何?
零件個數x(個)2345
加工時

]y(小時)
2.5344.5

查看答案和解析>>

同步練習冊答案