分析 根據(jù)三角函數(shù)的同角三角函數(shù)關(guān)系,兩角和的余弦公式等,我們可以$\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$對進行恒等變形,進而得到角A、B、C成等差數(shù)列與$\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$的等價關(guān)系,再由充要條件的定義即可得到答案.
解答 解:在△ABC中,$\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$⇒2sinA•sinC-sin2A=2cosA•cosC+cos2A
⇒2sinA•sinC-2cosA•cosC=cos2A+sin2A=1
⇒-2cos(A+C)=1
⇒cos(A+C)=-$\frac{1}{2}$⇒A+C=$\frac{2π}{3}$=2B
⇒角A、B、C成等差數(shù)列
當(dāng)角A、B、C成等差數(shù)列⇒A+C=$\frac{2π}{3}$=2B,角A有可能取90°,
故 $\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$不成立
故 $\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$是角A、B、C成等差數(shù)列的充分不必要條件.
故答案為:充分不必要條件.
點評 利用三角函數(shù)的同角三角函數(shù)關(guān)系,兩角和的余弦公式等,對$\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$進行恒等變形,探究其與A、B、C成等差數(shù)列的等價關(guān)系是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (0,1] | C. | (-1,0] | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4) | B. | (-∞,4] | C. | (4,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2.01 | 3 | 4.01 | 5.1 | 6.12 |
y | 3 | 8.01 | 15 | 23.8 | 36.04 |
A. | y=2x+1-1 | B. | y=x2-1 | C. | y=2log2x | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+y2=2 | B. | (x-1)2+(y+1)2=5 | C. | (x+1)2+(y-1)2=1 | D. | (x+1)2+(y+2)2=10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com