精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分13分)設關于的一元二次方程有兩根,且滿足

(1)試用表示;

(2)求證:數列是等比數列;

(3)時,求數列的通項公式,并求數列的前項和

【答案】(1)(2)詳見解析;(3)

【解析】

試題分析:(1)由韋達定理可得,,代入已知關系式可得的關系式(2)由(1)中所得的的關系式,根據等比數列的定義證為常數(3)根據等比數列的通項公式可先求得,從而可得根據分組求和及錯位相減法可求得數列的前項和

試題解析:解:(1)根據韋達定理,得,,

,故

(2)證明:

,則,從而

這時一元二次方程無實數根,故,

所以,數列是公比為的等比數列.

(3)設,則數列是公比的等比數列,

所以,

所以,

則由錯位相減法可得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數f(x)的極值點,并說明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定義在[1,t]上的函數g(x)=f(x)﹣ln(x+1)+x3在x=1處取得最大值,求實數t的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線l過直線x+y﹣2=0和直線x﹣y+4=0的交點,且與直線3x﹣2y+4=0平行,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,角A、B、C的對邊分別為,已知向量且滿足

(1)求角A的大小;

(2)試判斷的形狀

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是首項為正數的等差數列,數列的前項和為.

(1)求數列的通項公式;

(2)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn . 若對任意正整數n,總存在正整數m,使得Sn=am , 則稱{an}是“H數列”.
(1)若數列{an}的前n項和Sn=2n(n∈N*),證明:{an}是“H數列”;
(2)設{an}是等差數列,其首項a1=1,公差d<0.若{an}是“H數列”,求d的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點.

(1)求點M的軌跡C的方程;

(2)過點G(0, )的動直線l與點的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大;
(2)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E為PB的中點.
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.

查看答案和解析>>

同步練習冊答案