5.已知f(x)為定義在(0,+∞)上的可導(dǎo)函數(shù),且f(x)>xf'(x),則不等式${x^2}f(\frac{1}{x})-f(x)<0$的解集為( 。
A.(0,4)B.(0,3)C.(0,2)D.(0,1)

分析 令輔助函數(shù)F(x)=$\frac{f(x)}{x}$,求其導(dǎo)函數(shù),據(jù)導(dǎo)函數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系判斷出F(x)的單調(diào)性,利用單調(diào)性判斷出由不等式 $\frac{f(\frac{1}{x})}{\frac{1}{x}}$>$\frac{f(x)}{x}$的關(guān)系,利用不等式的性質(zhì)得到結(jié)論.

解答 解:令F(x)=$\frac{f(x)}{x}$,則F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵f(x)>xf′(x),∴F′(x)<0,
∴F(x)=$\frac{f(x)}{x}$為定義域上的減函數(shù),
由不等式x2f($\frac{1}{x}$)-f(x)<0,
得:$\frac{f(\frac{1}{x})}{\frac{1}{x}}$><$\frac{f(x)}{x}$,
∴$\frac{1}{x}$>x,
∴0<x<1,
故選:D.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算,考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,函數(shù)的導(dǎo)函數(shù)符號(hào)確定函數(shù)的單調(diào)性:當(dāng)導(dǎo)函數(shù)大于0時(shí),函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于0時(shí),函數(shù)單調(diào)遞減.此題為中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C:x2+(y-4)2=4,直線l過點(diǎn)(-2,0).
(1)當(dāng)直線l與圓C相切時(shí),求直線l的一般式方程;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且|AB|≥2$\sqrt{2}$時(shí),求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分別是公差不為零的等差數(shù)列{bn}的前三項(xiàng).
(1)求k的值;
(2)求證:對任意的n∈N*,bn,b2n,b4n不可能是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C的對邊分別為a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面積;
(2)設(shè)向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化簡f(α);
(2)當(dāng)$α=-\frac{31π}{3}$時(shí),求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓與雙曲線$\frac{x^2}{3}-\frac{y^2}{2}=1$有共同的焦點(diǎn),且離心率為$\frac{{\sqrt{5}}}{5}$,則橢圓的標(biāo)準(zhǔn)方程為(  )
A.$\frac{x^2}{20}+\frac{y^2}{25}=1$B.$\frac{x^2}{25}+\frac{y^2}{5}=1$C.$\frac{x^2}{25}+\frac{y^2}{20}=1$D.$\frac{x^2}{5}+\frac{y^2}{25}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,在其定義域內(nèi)是增函數(shù)而且又是奇函數(shù)的是( 。
A.$y=x+\frac{1}{x}$B.y=2x-2-xC.y=log2|x|D.y=2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$sinα-2cosα=\frac{{\sqrt{10}}}{2}$,則tan2α=( 。
A.$\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題中錯(cuò)誤的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
D.如果平面α⊥平面β,α∩β=l,過α內(nèi)任意一點(diǎn)作l的垂線m,則m⊥β

查看答案和解析>>

同步練習(xí)冊答案